Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Lipidomic Analysis
2.3. Transcriptome Analysis
2.4. General Statistical Analysis
3. Results and Discussion
3.1. Altered TAG Content and Species
3.2. Altered Expression of Genes Related to TAG Synthesis
3.3. Altered Expression of Genes Related to TAG Hydrolysis and CLE Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lu, B.; Jiang, Y.J.; Man, M.Q.; Brown, B.; Elias, P.M.; Feingold, K.R. Expression and regulation of 1-acyl- sn -glycerol- 3-phosphate acyltransferases in the epidermis. J. Lipid Res. 2005, 46, 2448–2457. [Google Scholar] [CrossRef] [PubMed]
- Radner, F.P.W.; Streith, I.E.; Schoiswohl, G.; Schweiger, M.; Kumari, M.; Eichmann, T.O.; Rechberger, G.; Koefeler, H.C.; Eder, S.; Schauer, S.; et al. Growth Retardation, Impaired Triacylglycerol Catabolism, Hepatic Steatosis, and Lethal Skin Barrier Defect in Mice Lacking Comparative Gene Identification-58 (CGI-58). J. Biol. Chem. 2010, 285, 7300–7311. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, M.; Nakajima, K.; Yamamoto, M.; Teraishi, M.; Uchida, Y.; Akiyama, M.; Shimizu, H.; Sano, S. Epidermal triglyceride levels are correlated with severity of ichthyosis in Dorfman–Chanarin syndrome. J. Dermatol. Sci. 2010, 57, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.J.; Myers, H.M.; Watkins, S.M.; Brown, B.E.; Feingold, K.R.; Elias, P.M.; Farese, R. V Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 2004, 279, 11767–11776. [Google Scholar] [CrossRef] [PubMed]
- Bibel, D.J.; Miller, S.J.; Brown, B.E.; Pandey, B.B.; Elias, P.M.; Shinefield, H.R.; Aly, R. Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J. Invest. Dermatol. 1989, 92, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Kong, S.; Seong, K.; Cho, Y. γ-Linolenic Acid in Borage Oil Reverses Epidermal Hyperproliferation in Guinea Pigs. J. Nutr. 2002, 132, 3090–3097. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-O.; Kim, K.; Jeon, S.; Seo, C.-H.; Lee, Y.-M.; Cho, Y. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs. Lipids 2015, 50, 1051–1056. [Google Scholar] [CrossRef]
- Kim, K.-P.; Jeon, S.; Kim, M.-J.; Cho, Y. Borage oil restores acidic skin pH by up-regulating the activity or expression of filaggrin and enzymes involved in epidermal lactate, free fatty acid, and acidic free amino acid metabolism in essential fatty acid-deficient Guinea pigs. Nutr. Res. 2018, 58, 26–35. [Google Scholar] [CrossRef]
- Shin, J.; Kim, Y.J.; Kwon, O.; Kim, N.-I.; Cho, Y. Associations among plasma vitamin C, epidermal ceramide and clinical severity of atopic dermatitis. Nutr. Res. Pract. 2016, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Shon, J.C.; Shin, H.-S.; Seo, Y.K.; Yoon, Y.-R.; Shin, H.; Liu, K.-H. Direct infusion MS-based lipid profiling reveals the pharmacological effects of compound K-reinforced ginsenosides in high-fat diet induced obese mice. J. Agric. Food Chem. 2015, 63, 2919–2929. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Feingold, K.R. The expression and regulation of enzymes mediating the biosynthesis of triglycerides and phospholipids in keratinocytes/epidermis. Dermatoendocrinol. 2011, 3, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Eto, M.; Shindou, H.; Shimizu, T. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem. Biophys. Res. Commun. 2014, 443, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, T.; Sato, Y.; Sassa, T.; Ohno, Y.; Kihara, A. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 2011, 585, 3337–3341. [Google Scholar] [CrossRef] [PubMed]
- Radner, F.P.W.; Fischer, J. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 2014, 1841, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Kamiyama, N.; Nakamichi, S.; Kihara, A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 2017, 8, 14610. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M.; Gruber, R.; Crumrine, D.; Menon, G.; Williams, M.L.; Wakefield, J.S.; Holleran, W.M.; Uchida, Y. Formation and functions of the corneocyte lipid envelope (CLE). Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 2014, 1841, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J. Dermatol. Sci. 2017, 88, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; McDonnell, M.; Chen, X.-S.; Lakkis, M.M.; Li, H.; Isaacs, S.N.; Elsea, S.H.; Patel, P.I.; Funk, C.D. Human 12(R)-Lipoxygenase and the Mouse Ortholog. J. Biol. Chem. 1998, 273, 33540–33547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene 1 | Forward | Reverse |
---|---|---|
Gapdh | 5′-AGAACATCATCCCCGCATCC-3′ | 5′-TCCACAACCGACACATTAGGT-3′ |
Mogat2 | 5′-TGCTCTACCTTTTGCTTATGGG-3′ | 5′-TGGCTTGTCTCGGTCCA-3′ |
Agpat4 | 5′-GCTGATTGTTATGTTAGGCGGA-3′ | 5′-GACTTTGGGGGTTTCTGGGA-3′ |
Elovl7 | 5′-GGACAGAGTTCCAGCGAGTA-3′ | 5′-ACAAGTGAGAGTCAAAAGCCTG-3′ |
Dgat2 | 5′-CTCCTCTGTCAAATCTCAGGC-3′ | 5′-TTACTCCAACAACACGCAGG-3′ |
Gene 2 | FC 3 | Function |
---|---|---|
Lipn | 3.66 | Lipases |
Lipk | 3.65 | Lipases |
Pnpla5 | 2.35 | Lipases |
Elovl4 | 1.72 | Elongation of fatty acids |
Cyp4f22 | 1.57 | Omega-hydroxylation of ultra-long-chain fatty acids |
Cers3 | 1.61 | Ceramide synthesis |
Ugcg | 1.53 | Glucosylation of ceramide |
Abca12 | 3.07 | Transport via lamellar granules |
Alox12b | 2.13 | Oxidation of linoleic acid in ceramide |
Aloxe3 | 1.65 | Oxidation of linoleic acid in ceramide |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Liu, K.-H.; Cho, Y.; Kim, K.-P. Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs. Nutrients 2019, 11, 2818. https://doi.org/10.3390/nu11112818
Lee J-Y, Liu K-H, Cho Y, Kim K-P. Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs. Nutrients. 2019; 11(11):2818. https://doi.org/10.3390/nu11112818
Chicago/Turabian StyleLee, Ju-Young, Kwang-Hyeon Liu, Yunhi Cho, and Kun-Pyo Kim. 2019. "Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs" Nutrients 11, no. 11: 2818. https://doi.org/10.3390/nu11112818
APA StyleLee, J.-Y., Liu, K.-H., Cho, Y., & Kim, K.-P. (2019). Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs. Nutrients, 11(11), 2818. https://doi.org/10.3390/nu11112818