Fermented Goat Milk Consumption Enhances Brain Molecular Functions during Iron Deficiency Anemia Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation and Dehydration of the Milks
2.2. Animals
2.3. Experimental Design
2.4. Hematological Test
2.5. Iron Assessments
2.6. Dopamine
2.7. Serotonin
2.8. MAO-A and MAO-B
2.9. Irisin
2.10. Synaptophysin
2.11. Neuropeptides Assessment
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kyu, H.H.; Pinho, C.; Wagner, J.A.; Brown, J.C.; Bertozzi-Villa, A.; Charlson, F.J.; Coffeng, L.E.; Dandona, L.; Erskine, H.E.; Ferrari, A.J.; et al. Global and National Burden of Diseases and Injuries Among Children and Adolescents Between 1990 and 2013: Findings From the Global Burden of Disease 2013 Study. JAMA Pediatrics 2016, 170, 267–287. [Google Scholar] [CrossRef]
- Beard, J.L.; Connor, J.R. Iron status and neural functioning. Ann. Rev. Nutr. 2003, 23, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Cusick, S.E.; Georgieff, M.K.; Rao, R. Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 2018, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E.; Wenger, M.J.; Scott, S.P.; Rhoten, S.E.; Lung’aho, M.G.; Haas, J.D. Consumption of Iron-Biofortified Beans Positively Affects Cognitive Performance in 18- to 27-Year-Old Rwandan Female College Students in an 18-Week Randomized Controlled Efficacy Trial. J. Nutr. 2017, 147, 2109–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, M.J.; DellaValle, D.M. Effect of iron deficiency on simultaneous measures of behavior, brain activity, and energy expenditure in the performance of a cognitive task. Nutr. Neurosci. 2019, 22, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E. Iron and brain functions. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.L.; Theberge, D.C.; Brown, W.S.; Schweitzer, S.U.; Nissenson, A.R. Normalizing hematocrit in dialysis patients improves brain function. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1999, 33, 1122–1130. [Google Scholar] [CrossRef]
- Nissenson, A.R. Epoetin and cognitive function. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1992, 20, 21–24. [Google Scholar] [PubMed]
- Moreno, F.; Sanz-Guajardo, D.; Lopez-Gomez, J.M.; Jofre, R.; Valderrabano, F. Increasing the Hematocrit Has a Beneficial Effect on Quality of Life and Is Safe in Selected Hemodialysis Patients. J. Am. Soc. Nephrol. 2000, 11, 335. [Google Scholar]
- Falkingham, M.; Abdelhamid, A.; Curtis, P.; Fairweather-Tait, S.; Dye, L.; Hooper, L. The effects of oral iron supplementation on cognition in older children and adults: A systematic review and meta-analysis. Nutr. J. 2010, 9, 4. [Google Scholar] [CrossRef]
- Bahrami, A.; Khorasanchi, Z. Anemia is associated with cognitive impairment in adolescent girls: A cross-sectional survey. Appl. Neuropsychol. Child 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Camfield, D.A.; Owen, L.; Scholey, A.B.; Pipingas, A.; Stough, C. Dairy constituents and neurocognitive health in ageing. Br. J. Nutr. 2011, 106, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crichton, G.E.; Murphy, K.J.; Bryan, J. Dairy intake and cognitive health in middle-aged South Australians. Asia Pac. J. Clin. Nutr. 2010, 19, 161–171. [Google Scholar] [PubMed]
- Moreno-Fernandez, J.; Diaz-Castro, J.; Pulido-Moran, M.; Alferez, M.J.; Boesch, C.; Sanchez-Alcover, A.; Lopez-Aliaga, I. Fermented Goat’s Milk Consumption Improves Duodenal Expression of Iron Homeostasis Genes during Anemia Recovery. J. Agric. food Chem. 2016, 64, 2560–2568. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernandez, J.; Diaz-Castro, J.; Alferez, M.J.; Hijano, S.; Nestares, T.; Lopez-Aliaga, I. Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk. J. Dairy Res. 2016, 83, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Pallares, I.; Lisbona, F.; Aliaga, I.L.; Barrionuevo, M.; Alferez, M.J.; Campos, M.S. Effect of iron deficiency on the digestive utilization of iron, phosphorus, calcium and magnesium in rats. Br. J. Nutr. 1993, 70, 609–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, K.B.; Simpson, R.J.; Peters, T.J. Intestinal iron absorption studies in mouse models of iron-overload. Br. J. Haematol. 1994, 86, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64, S34–S43. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Ehrenreich, H.; Siren, A.L. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J. Neurosurg. Anesthesiol. 2006, 18, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Munoz, P.; Humeres, A. Iron deficiency on neuronal function. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2012, 25, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002, 67, 53–83. [Google Scholar] [CrossRef]
- Unger, E.L.; Wiesinger, J.A.; Hao, L.; Beard, J.L. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J. Nutr. 2008, 138, 2487–2494. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernandez, J.; Diaz-Castro, J. Iron Deficiency and Neuroendocrine Regulators of Basal Metabolism, Body Composition and Energy Expenditure in Rats. Nutrients 2019, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995, 5, 205–216. [Google Scholar] [CrossRef]
- Youdim, M.B.; Ben-Shachar, D.; Yehuda, S. Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am. J. Clin. Nutr. 1989, 50, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Agarwal, K.N.; Chansuria, J.P.; Taneja, V. Effect of latent iron deficiency on 5-hydroxytryptamine metabolism in rat brain. J. Neurochem. 1989, 52, 730–735. [Google Scholar] [CrossRef]
- Finch, C.A.; Miller, L.R.; Inamdar, A.R.; Person, R.; Seiler, K.; Mackler, B. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J. Clin. Investig. 1976, 58, 447–453. [Google Scholar] [CrossRef]
- Morse, A.C.; Beard, J.L.; Azar, M.R.; Jones, B.C. Sex and Genetics are Important Cofactors in Assessing the Impact of Iron Deficiency on the Developing Mouse Brain. Nutr. Neurosci. 1999, 2, 323–335. [Google Scholar] [CrossRef]
- Kaladhar, M.; Rao, B.S. Effect of maternal iron deficiency in rat on serotonin uptake in vitro by brain synaptic vesicles in the offspring. J. Neurochem. 1983, 40, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.; Ben-Shachar, D. Minimal brain damage induced by early iron deficiency: Modified dopaminergic neurotransmission. Isr. J. Med. Sci. 1987, 23, 19–25. [Google Scholar] [PubMed]
- Li, Y.; Kim, J.; Buckett, P.D.; Böhlke, M.; Maher, T.J.; Wessling-Resnick, M. Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats. J. Nutr. 2011, 141, 2133–2138. [Google Scholar] [CrossRef] [PubMed]
- Wrann, C.D. FNDC5/irisin—Their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast. 2015, 1, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Golub, M.S.; Hogrefe, C.E. Fetal iron deficiency and genotype influence emotionality in infant rhesus monkeys. J. Nutr. 2015, 145, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Kostoglou-Athanassiou, I.; Forsling, M.L.; Navarra, P.; Grossman, A.B. Oxytocin release is inhibited by the generation of carbon monoxide from the rat hypothalamus-further evidence for carbon monoxide as a neuromodulator. Brain Res. Mol. Brain Res. 1996, 42, 301–306. [Google Scholar] [CrossRef]
- Singh, M.; Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: An emerging anti-inflammatory antimicrobial peptide. BioMed Res. Int. 2014, 2014, 874610. [Google Scholar] [CrossRef]
- Veening, J.G.; Barendregt, H.P. The effects of beta-endorphin: State change modification. Fluids Barriers CNS 2015, 12, 3. [Google Scholar] [CrossRef]
- Gordon, S.L.; Harper, C.B.; Smillie, K.J.; Cousin, M.A. A Fine Balance of Synaptophysin Levels Underlies Efficient Retrieval of Synaptobrevin II to Synaptic Vesicles. PLoS ONE 2016, 11, e0149457. [Google Scholar] [CrossRef]
- Alladi, P.A.; Wadhwa, S.; Singh, N. Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience 2002, 114, 577–590. [Google Scholar] [CrossRef]
- Joca, S.R.; Guimaraes, F.S.; Del-Bel, E. Inhibition of nitric oxide synthase increases synaptophysin mRNA expression in the hippocampal formation of rats. Neurosci. Lett. 2007, 421, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Ano, Y.; Ozawa, M.; Kutsukake, T.; Sugiyama, S.; Uchida, K.; Yoshida, A.; Nakayama, H. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS ONE 2015, 10, e0118512. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Aliaga, I.; Garcia-Pedro, J.D.; Moreno-Fernandez, J.; Alferez, M.J.M.; Lopez-Frias, M.; Diaz-Castro, J. Fermented goat milk consumption improves iron status and evokes inflammatory signalling during anemia recovery. Food Funct. 2018, 9, 3195–3201. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, M.V.; Ledo, J.H. Targeting Alzheimer’s pathology through PPARgamma signaling: Modulation of microglial function. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 5083–5084. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.Q.; Qin, S.X.; Wu, L.J.; Mackay, C.R.; Hyman, B.T. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am. J. Pathol. 1998, 153, 31–37. [Google Scholar] [CrossRef]
- Mrak, R.E.; Griffin, W.S. Potential inflammatory biomarkers in Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2005, 8, 369–375. [Google Scholar] [CrossRef]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Chi, H.; Chang, H.-Y.; Sang, T.-K. Neuronal cell death mechanisms in major neurodegenerative diseases. Int. J. Mol. Sci. 2018, 19, 3082. [Google Scholar] [CrossRef]
- Moreno-Fernandez, J.; Diaz-Castro, J.; Alferez, M.J.; Nestares, T.; Ochoa, J.J.; Sanchez-Alcover, A.; Lopez-Aliaga, I. Fermented goat milk consumption improves melatonin levels and influences positively the antioxidant status during nutritional ferropenic anemia recovery. Food Funct. 2016, 7, 834–842. [Google Scholar] [CrossRef]
- Moreno-Fernandez, J.; Diaz-Castro, J.; Alferez, M.J.; Boesch, C.; Nestares, T.; Lopez-Aliaga, I. Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery. J. Sci. Food Agric. 2017, 97, 1433–1442. [Google Scholar] [CrossRef]
- Hare, D.J.; Double, K.L. Iron and dopamine: A toxic couple. Brain J. Neurol. 2016, 139, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Naoi, M.; Riederer, P.; Maruyama, W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: Genetic and environmental factors involved in type A MAO expression. J. Neural Transm. 2016, 123, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Shrihari, T.G. BETA—Endorphins—A Novel Natural Holistic Healer. J. Microb. Biochem. Technol. 2018, 10, 25–26. [Google Scholar]
- Miwa, C.P.; de Lima, M.N.; Scalco, F.; Vedana, G.; Mattos, R.; Fernandez, L.L.; Hilbig, A.; Schroder, N.; Vianna, M.R. Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox. Res. 2011, 19, 527–535. [Google Scholar] [CrossRef]
- Ano, Y.; Ayabe, T.; Kutsukake, T.; Ohya, R.; Takaichi, Y.; Uchida, S.; Yamada, K.; Uchida, K.; Takashima, A.; Nakayama, H. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol. Aging 2018, 72, 23–31. [Google Scholar] [CrossRef]
- Nagatsu, T.; Sawada, M. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: Possible implications of glial cells. J. Neural Transm. Suppl. 2006, 71, 53–65. [Google Scholar]
- Son, B.; Jun, S.Y.; Seo, H.; Youn, H.; Yang, H.J.; Kim, W.; Kim, H.K.; Kang, C.; Youn, B. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer. Sci. Rep. 2016, 6, 21986. [Google Scholar] [CrossRef]
- Luger, T.A.; Scholzen, T.E.; Brzoska, T.; Bohm, M. New insights into the functions of alpha-MSH and related peptides in the immune system. Ann. N. Y. Acad. Sci. 2003, 994, 133–140. [Google Scholar] [CrossRef]
Normal-Fe Control Group (n = 50) | Low-Fe Anemic Group (n = 50) | |
---|---|---|
Hemoglobin concentration (g·L−1) | 130.62 ± 2.77 | 60.46 ± 2.77 * |
Red blood cells (1012·L−1) | 7.11 ± 0.22 | 3.19 ± 0.30 * |
Hematocrit (%) | 41.13 ± 1.03 | 13.12 ± 1.33 * |
Mean corpuscular volume (fL) | 54.92 ± 0.52 | 37.21 ± 0.37 * |
Mean corpuscular hemoglobin (pg) | 20.01 ± 0.15 | 14.22 ± 0.53 * |
Mean corpuscular hemoglobin concentration (g·dL−1) | 36.12 ± 0.37 | 30.56 ± 0.73 * |
Red cell distribution width (%) | 16.33 ± 0.45 | 19.67 ± 0.35 * |
Platelets (109·L−1) | 731 ± 70.11 | 2123 ± 112 * |
White blood cells (109·L−1) | 8.32 ± 0.41 | 8.45 ± 0.59 |
Lymphocytes (106·mL−1) | 7.76 ± 0.51 | 5.62 ± 0.77 * |
Fe (µg·L−1) | 1342 ± 97.31 | 607 ± 55.22 * |
Total iron-binding capacity (µg·L−1) | 2623 ± 179 | 18002 ± 539 * |
Transferrin saturation (%) | 49.22 ± 5.86 | 4.01 ± 0.45 * |
Ferritin (µg·L−1) | 79.54 ± 2.23 | 49.12 ± 1.58 * |
Hepcidin (ng·mL−1) | 13.25 ± 0.32 | 15.42 ± 0.68 * |
Fe Content | Fermented Cow Milk Diet | Fermented Goat Milk Diet | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Control Group | Anemic Group | Control Group | Anemic Group | Diet | Anemia | Fe Content | ||
Hemoglobin concentration (g·L−1) | Normal | 127.73 ± 2.35 | 128.42 ± 2.43 | 131.91 ± 2.44 | 130.01 ± 2.39 | NS 1 | NS | <0.001 |
Overload | 141.97 ± 2.53 C | 140.18 ± 2.87 C | 141.43 ± 2.77 C | 145.62 ± 2.92 BC | <0.05 | NS | ||
Red blood cells (1012·L−1) | Normal | 7.21 ± 0.18 | 7.16 ± 0.20 | 7.35 ± 0.22 | 7.32 ± 0.19 | NS | NS | <0.05 |
Overload | 7.01 ± 0.19 | 7.19 ± 0.19 | 8.12 ± 0.28 AC | 7.21 ± 0.22 | <0.01 | NS | ||
Hematocrit (%) | Normal | 40.22 ± 1.12 | 39.22 ± 1.01 | 41.87 ± 1.41 A | 43.05 ± 1.11 B | <0.01 | NS | <0.01 |
Overload | 39.87 ± 1.25 | 45.11 ± 2.34 C | 44.75 ± 1.51 AC | 44.91 ± 1.41 C | <0.05 | NS | ||
Mean corpuscular volume (fL) | Normal | 57.28 ± 0.54 | 55.28 ± 0.53 | 57.41 ± 0.57 | 55.22 ± 0.54 | NS | NS | NS |
Overload | 56.90 ± 0.60 | 53.39 ± 0.54 | 56.62 ± 0.54 | 56.33 ± 0.51 B | <0.05 | NS | ||
Platelets (109·L−1) | Normal | 935.62 ± 72.11 | 961.53 ± 67.33 | 929.21 ± 78.11 | 937.32 ± 68.53 | NS | NS | NS |
Overload | 939.22 ± 71.24 | 963.29 ± 70.21 | 936.12 ± 79.76 | 942.12 ± 70.25 | NS | NS | ||
Serum Fe (µg·L−1) | Normal | 1323 ± 81.88 | 1347 ± 85.33 | 1362 ± 88.22 | 1332 ± 91.13 | NS | NS | <0.01 |
Overload | 1576 ± 98.56 C | 1592 ± 96.25 C | 1552 ± 97.89 C | 1569 ± 95.76 C | NS | NS | ||
Total iron-binding capacity (µg·L−1) | Normal | 2782 ± 153 | 2788 ± 142 | 2791 ± 143 | 2786 ± 152 | NS | NS | <0.01 |
Overload | 3151 ± 167 C | 3234 ± 171 C | 3241 ± 166 C | 3188 ± 169 C | NS | NS | ||
Transferrin saturation (%) | Normal | 46.22 ± 0.91 | 45.50 ± 0.87 | 46.79 ± 0.78 | 46.89 ± 0.91 | NS | NS | <0.01 |
Overload | 47.85 ± 1.21 C | 47.62 ± 1.12 C | 48.96 ± 1.11 C | 48.79 ± 1.07 C | NS | NS | ||
Serum ferritin (µg·L−1) | Normal | 83.11 ± 1.56 | 83.77 ± 1.29 | 84.31 ± 1.65 | 82.24 ± 1.82 | NS | NS | <0.01 |
Overload | 86.95 ± 1.88 C | 85.98 ± 1.76 C | 86.96 ± 1.83 C | 87.03 ± 1.79 C | NS | NS | ||
Serum hepcidin (ng·mL−1) | Normal | 16.21 ± 0.61 | 16.37 ± 0.53 | 14.11 ± 0.58 A | 14.33 ± 0.61 B | <0.01 | NS | NS |
Overload | 16.42 ± 0.58 | 16.39 ± 0.51 | 15.07 ± 0.58A | 14.22± 0.57B | <0.01 | NS |
Normal-Fe Control Group (n = 10) | Low-Fe Anemic Group (n = 10) | |
---|---|---|
Dopamine | 1970.00 ± 180.21 | 1560.01 ± 90.05 * |
Serotonin | 9179.0 ± 174.9 | 9409.0 ± 1813.5 |
MAO-A | 7856.3 ± 225.2 | 6622.3 ± 212.7 ** |
MAO-B | 267.96 ± 25.85 | 219.85 ± 10.81 |
Neurotensin | 513.40 ± 48.18 | 442.61 ± 37.63 |
Oxytocin | 249.71 ± 21.22 | 181.85 ± 17.86 ** |
Irisin | 21.17 ± 1.19 | 16.74 ± 0.90 ** |
Synaptophysin | 771.79 ± 36.97 | 1121.37 ± 28.62 ** |
α-MSH | 616.34 ± 20.52 | 200.58 ± 44.29 ** |
β-Endorphin | 2431.5 ± 126.0 | 1308.3 ± 186.6 ** |
Fe Content | Fermented Cow Milk Diet | Fermented Goat Milk Diet | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Control Group | Anemic Group | Control Group | Anemic Group | Diet | Anemia | Fe Content | ||
Dopamine | Normal | 1210.00 ± 40.01 | 980.14 ± 30.07 | 1710.10 ± 16.07 A | 1320.11 ± 11.23 B | <0.01 | NS | <0.05 |
Overload | 3130.02 ± 22.14 D | 1440.21 ± 30.12 CD | 1400.02 ± 60.04 A | 1260 ± 40.33 C | <0.01 | < 0.01 | ||
Serotonin | Normal | 33651.9 ± 3334.5 | 61341.9 ± 5820.1 C | 39278.9 ± 4571.7 | 82050.5 ± 2995.1 BC | <0.05 | <0.001 | <0.001 |
Overload | 26346.4 ± 2943.3 D | 29564.3 ± 2806.3 D | 20981.4 ± 852.7 D | 23688.0 ± 962.7 D | NS | NS | ||
MAO-A | Normal | 8220.1 ± 261.5 | 7279.3 ± 298.6 C | 7390.3 ± 211.9 A | 6716.7 ± 483.3 B | <0.05 | <0.05 | <0.01 |
Overload | 13935.1 ± 282.3 D | 7152.6 ± 498.0 C | 8403.7 ± 353.4 AD | 4001.8 ± 168.3 BCD | <0.001 | <0.001 | ||
MAO-B | Normal | 260.96 ± 10.81 | 237.89 ± 11.57 C | 215.13 ± 10.10 A | 208.93 ± 10.07 B | <0.001 | <0.05 | <0.01 |
Overload | 327.70 ± 9.56 D | 259.96 ± 6.68 C | 305.24 ± 9.01 D | 267.52 ± 7.90 CD | NS | <0.01 | ||
Neurotensin | Normal | 317.98 ± 11.94 | 405.37 ± 18.23 C | 336.36 ± 21.37 | 373.21 ± 10.15 | NS | <0.05 | <0.05 |
Overload | 360.77 ± 12.67 D | 345.61 ± 12.80 D | 355.79 ± 10.39 | 341.56 ± 9.98 | NS | NS | ||
Oxytocin | Normal | 145.57 ± 9.27 | 173.42 ± 33.90 C | 182.41 ± 7.27 A | 177.74 ± 1.87 | <0.05 | <0.05 | <0.001 |
Overload | 217.27 ± 3.58 D | 86.95 ± 0.13 CD | 225.52 ± 3.94 D | 89.85 ± 1.57 CD | NS | <0.01 | ||
Irisin | Normal | 16.75 ± 0.70 | 15.96 ± 0.35 | 19.18 ± 1.26 | 17.24 ± 1.03 | NS | NS | NS |
Overload | 19.32 ± 0.60 | 16.66 ± 0.85 | 17.58 ± 0.79 | 15.64 ± 0.70 | NS | NS | ||
Synaptophysin | Normal | 836.97 ± 31.40 | 907.33 ± 27.57 C | 1091.02 ± 26.92 A | 730.09 ± 20.44 BC | <0.001 | <0.01 | <0.001 |
Overload | 552.01 ± 40.56 D | 789.02 ± 49.59 CD | 1290.56 ± 51.89 AD | 883.40 ± 24.74 BCD | <0.001 | <0.001 | ||
α-MSH | Normal | 310.87 ± 14.95 | 86.28 ± 1.38 C | 1162.05 ± 9.07 A | 494.28 ± 22.64 BC | <0.001 | <0.001 | <0.001 |
Overload | 669.74 ± 33.48 D | 251.69 ± 18.04 CD | 726.85 ± 21.86 A D | 312.54 ± 9.40 BC D | <0.01 | <0.001 | ||
β-Endorphin | Normal | 2426.5 ± 79.4 | 744.3 ± 39.9 C | 2551.9 ± 131.7 | 671.3 ± 36.4 C | NS | <0.01 | <0.05 |
Overload | 741.6 ± 41.3 D | 688.6 ± 40.9 | 1344.2 ± 71.5 AD | 640.1 ± 34.0 C | <0.05 | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Fernández, J.; López-Aliaga, I.; García-Burgos, M.; J.M. Alférez, M.; Díaz-Castro, J. Fermented Goat Milk Consumption Enhances Brain Molecular Functions during Iron Deficiency Anemia Recovery. Nutrients 2019, 11, 2394. https://doi.org/10.3390/nu11102394
Moreno-Fernández J, López-Aliaga I, García-Burgos M, J.M. Alférez M, Díaz-Castro J. Fermented Goat Milk Consumption Enhances Brain Molecular Functions during Iron Deficiency Anemia Recovery. Nutrients. 2019; 11(10):2394. https://doi.org/10.3390/nu11102394
Chicago/Turabian StyleMoreno-Fernández, Jorge, Inmaculada López-Aliaga, María García-Burgos, María J.M. Alférez, and Javier Díaz-Castro. 2019. "Fermented Goat Milk Consumption Enhances Brain Molecular Functions during Iron Deficiency Anemia Recovery" Nutrients 11, no. 10: 2394. https://doi.org/10.3390/nu11102394
APA StyleMoreno-Fernández, J., López-Aliaga, I., García-Burgos, M., J.M. Alférez, M., & Díaz-Castro, J. (2019). Fermented Goat Milk Consumption Enhances Brain Molecular Functions during Iron Deficiency Anemia Recovery. Nutrients, 11(10), 2394. https://doi.org/10.3390/nu11102394