A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Measurements
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azziz, R. Polycystic Ovary Syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.A.; Carmina, E.; Diamanti-Kandarakis, E.; Dokras, A.; Escobar-Morreale, H.F.; Futterweit, W.; Lobo, R.; Norman, R.J.; Talbott, E.; Dumesic, D.A. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 2010, 95, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wu, C.H.; Zhang, Y.; Wang, Y.Y.; Xu, W.D.; Lin, T.C.; Li, S.X.; Wang, L.H.; Zheng, J.; Sun, Y.; et al. High-free androgen index is associated with increased risk of non-alcoholic fatty liver disease in women with polycystic ovary syndrome, independent of obesity and insulin resistance. Int. J. Obes. (Lond.) 2017, 41, 1341–1347. [Google Scholar] [CrossRef]
- Macut, D.; Tziomalos, K.; Bozic-Antic, I.; Bjekic-Macut, J.; Katsikis, I.; Papadakis, E.; Andric, Z.; Panidis, D. Non-alcoholic fatty liver disease is associated with insulin resistance and lipid accumulation product in women with polycystic ovary syndrome. Hum. Reprod. 2016, 31, 1347–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am. J. Gastroenterol. 2012, 107, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Day, C.P.; Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar] [CrossRef]
- He, C.L.; Lin, Z.M.; Robb, S.W.; Ezeamama, A.E. Serum vitamin D levels and polycystic ovary syndrome: A systematic review and meta-analysis. Nutrients 2015, 7, 4555–4577. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Policola, C.; Prioletta, A.; Sorice, G.; Mezza, T.; Lassandro, A.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin. Nutr. 2012, 31, 476–480. [Google Scholar] [CrossRef]
- Abootorabi, M.S.; Ayremlou, P.; Behroozi-Lak, T. The effect of vitamin D supplementation on insulin resistance, visceral fat and adiponectin in vitamin D deficient women with polycystic ovary syndrome: A randomized placebo-controlled trial. Gynecol. Endocrinol. 2018, 34, 489–494. [Google Scholar] [CrossRef]
- Lagowska, K.; Bajerska, J.; Jamka, M. The role of vitamin d oral supplementation in insulin resistance in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 1637. [Google Scholar] [CrossRef] [PubMed]
- Wehr, E.; Pieber, T.R.; Obermayer-Pietsch, B. Effect of vitamin d3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: A pilot study. J. Endocrinol. Investig. 2011, 34, 757–763. [Google Scholar]
- Irani, M.; Seifer, D.B.; Grazi, R.V.; Julka, N.; Bhatt, D.; Kalgi, B.; Irani, S.; Tal, O.; Lambert-Messerlian, G.; Tal, R. Vitamin D supplementation decreases TGF-β1 bioavailability in pcos: A randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2015, 100, 4307–4314. [Google Scholar] [CrossRef] [PubMed]
- Pal, L.; Berry, A.; Coraluzzi, L.; Kustan, E.; Danton, C.; Shaw, J.; Taylor, H. Therapeutic implications of vitamin D and calcium in overweight women with polycystic ovary syndrome. Gynecol. Endocrinol. 2012, 28, 965–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamilian, M.; Foroozanfard, F.; Rahmani, E.; Talebi, M.; Bahmani, F.; Asemi, Z. Effect of two different doses of vitamin d supplementation on metabolic profiles of insulin-resistant patients with polycystic ovary syndrome. Nutrients 2017, 9, 1280. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Ardabili, H.; Pourghassem Gargari, B.; Farzadi, L. Effects of vitamin D on cardiovascular disease risk factors in polycystic ovary syndrome women with vitamin D deficiency. J. Endocrinol. Investig. 2013, 36, 28–32. [Google Scholar]
- Raja-Khan, N.; Shah, J.; Stetter, C.M.; Lott, M.E.; Kunselman, A.R.; Dodson, W.C.; Legro, R.S. High-dosevitaminD supplementation and measures of insulin sensitivity in polycystic ovary syndrome: A randomized, controlled pilot trial. Fertil. Steril. 2014, 101, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Garg, G.; Kachhawa, G.; Ramot, R.; Khadgawat, R.; Tandon, N.; Sreenivas, V.; Kriplani, A.; Gupta, N. Effect of vitamin D supplementation on insulin kinetics and cardiovascular risk factors in polycystic ovarian syndrome: A pilot study. Endocr. Connect. 2015, 4, 108–116. [Google Scholar] [CrossRef]
- Trummer, C.; Schwetz, V.; Kollmann, M.; Wolfler, M.; Munzker, J.; Pieber, T.R.; Pilz, S.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in pcos: A randomized-controlled trial. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef]
- Asemi, Z.; Foroozanfard, F.; Hashemi, T.; Bahmani, F.; Jamilian, M.; Esmaillzadeh, A. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin. Nutr. 2015, 34, 586–592. [Google Scholar] [CrossRef]
- Eliades, M.; Spyrou, E. Vitamin D: A new player in non-alcoholic fatty liver disease? World J. Gastroenterol. 2015, 21, 1718–1727. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A. An update on the safety of nutraceuticals and effects on lipid parameters. Expert Opin. Drug Saf. 2018, 17, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Papapostoli, I.; Lammert, F.; Stokes, C.S. Effect of Short-Term Vitamin D Correction on Hepatic Steatosis as Quantified by Controlled Attenuation Parameter (CAP). J. Gastrointest. Liver Dis. 2016, 25, 175–181. [Google Scholar]
- Lorvand Amiri, H.; Agah, S.; Mousavi, S.N.; Hosseini, A.F.; Shidfar, F. Regression of non-alcoholic fatty liver by vitamin d supplement: A double-blind randomized controlled clinical trial. Arch. Iran. Med. 2016, 19, 631–638. [Google Scholar] [PubMed]
- Geier, A.; Eichinger, M.; Stirnimann, G.; Semela, D.; Tay, F.; Seifert, B.; Tschopp, O.; Bantel, H.; Jahn, D.; Marques Maggio, E.; et al. Treatment of non-alcoholic steatohepatitis patients with vitamin D: A double-blinded, randomized, placebo-controlled pilot study. Scand. J. Gastroenterol. 2018, 53, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtinghagen, R.; Pietsch, D.; Bantel, H.; Manns, M.P.; Brand, K.; Bahr, M.J. The Enhanced Liver Fibrosis (ELF) score: Normal values, influence factors and proposed cut-off values. J. Hepatol. 2013, 59, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Pinzani, M. The ELF panel: A new crystal ball in hepatology? Gut 2010, 59, 1165–1167. [Google Scholar] [CrossRef]
- Parkes, J.; Roderick, P.; Harris, S.; Day, C.; Mutimer, D.; Collier, J.; Lombard, M.; Alexander, G.; Ramage, J.; Dusheiko, G.; et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut 2010, 59, 1245–1251. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, H.S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Chon, C.Y.; Park, Y.N.; Han, K.H.; Kim, S.U. Prospective validation of ELF test in comparison with Fibroscan and FibroTest to predict liver fibrosis in Asian subjects with chronic hepatitis B. PLoS ONE 2012, 7, e41964. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Aspray, T.J.; Bowring, C.; Fraser, W.; Gittoes, N.; Javaid, M.K.; Macdonald, H.; Patel, S.; Selby, P.; Tanna, N.; Francis, R.M. National Osteoporosis S: National Osteoporosis Society vitamin D guideline summary. Age Ageing 2014, 43, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment—Insulin resistance and beta-cell function from fasting plasma-glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Shepherd, J.; Arnett, C.; Coady, A.M.; Kilpatrick, E.S.; Atkin, S.L. Atorvastatin increases 25-hydroxy vitamin D concentrations in patients with polycystic ovary syndrome. Clin. Chem. 2010, 56, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Cheng, Y.F.; Lai, C.Y.; Hsu, L.W.; Chang, Y.C.; Deng, J.Y.; Huang, Y.Z.; Honda, H.; Chen, K.D.; Wang, C.C.; et al. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in rats. J. Hepatol. 2011, 55, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Hochrath, K.; Stokes, C.S.; Geisel, J.; Pollheimer, M.J.; Fickert, P.; Dooley, S.; Lammert, F. Vitamin D modulates biliary fibrosis in ABCB4-deficient mice. Hepatol. Int. 2014, 8, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakpal, M.; Satsangi, S.; Mehta, M.; Duseja, A.; Bhadada, S.; Das, A.; Dhiman, R.K.; Chawla, Y.K. Vitamin D supplementation in patients with nonalcoholic fatty liver disease: A randomized controlled trial. JGH Open 2017, 1, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasarathy, J.; Varghese, R.; Feldman, A.; Khiyami, A.; McCullough, A.J.; Dasarathy, S. Patients with Nonalcoholic Fatty Liver Disease Have a Low Response Rate to Vitamin D Supplementation. J. Nutr. 2017, 147, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Abramovitch, S.; Dahan-Bachar, L.; Sharvit, E.; Weisman, Y.; Ben Tov, A.; Brazowski, E.; Reif, S. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut 2011, 60, 1728–1737. [Google Scholar] [CrossRef]
- Potter, J.J.; Liu, X.; Koteish, A.; Mezey, E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013, 33, 677–686. [Google Scholar] [CrossRef]
- Ding, N.; Yu, R.T.; Subramaniam, N.; Sherman, M.H.; Wilson, C.; Rao, R.; Leblanc, M.; Coulter, S.; He, M.; Scott, C.; et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013, 153, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Guo, E.; Yang, J.; Li, A.; Yang, Y.; Liu, S.; Liu, A.; Jiang, X. 1,25(OH)2 D3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity 2017, 25, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Amani, R.; Hajiani, E.; Cheraghian, B. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine 2014, 47, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, M.; Maghsoudi, Z.; Ghiasvand, R.; Iraj, B.; Askari, G. Effect of vitamin D supplementation on c-reactive protein in patients with nonalcoholic fatty liver. Int. J. Prev. Med. 2014, 5, 969–975. [Google Scholar] [PubMed]
- Foroughi, M.; Maghsoudi, Z.; Askari, G. The effect of vitamin D supplementation on blood sugar and different indices of insulin resistance in patients with non-alcoholic fatty liver disease (NAFLD). Iran J. Nurs. Midwifery Res. 2016, 21, 100–104. [Google Scholar] [PubMed]
- Pergialiotis, V.; Karampetsou, N.; Panagopoulos, P.; Trakakis, E.; Papantoniou, N. The effect of Vitamin D supplementation on hormonal and glycaemic profile of patients with PCOS: A meta-analysis of randomised trials. Int. J. Clin. Pract. 2017, 71. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xu, P.; Xue, K.; Duan, X.; Cao, J.; Luan, T.; Li, Q.; Gu, L. Effect of vitamin D on biochemical parameters in polycystic ovary syndrome women: A meta-analysis. Arch. Gynecol. Obstet. 2017, 295, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Akhter, A. Meta-Analysis of randomized controlled trials of pharmacologic agents in non-alcoholic steatohepatitis. Ann. Hepatol. 2017, 16, 538–547. [Google Scholar] [CrossRef] [PubMed]
Vitamin D group (n = 18) | Placebo group (n = 19) | % Change | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Baseline | 3 months | p-value a | Baseline | 3 months | p-value a | Vitamin D | Placebo | p-value b |
25OHD (nmol/L) | 25.6±11.4 | 90.4 ± 19.5 | <0.001* | 30.9 ± 11.1 | 47.6 ± 20.5 | <0.001 * | 319 ± 214 | 59.5 ± 56.7 | <0.001 ** |
Weight (kg) | 97.9 ± 31.3 | 98.2 ± 31.9 | 0.75 | 93.8 ± 22.3 | 94.3 ± 21.5 | 0.51 | 1.6(4.1) | 0.7(3.7) | 0.87 |
BMI (kg/m2) | 35.4 ± 10.6 | 35.5 ± 10.8 | 0.76 | 33.8 ± 7.2 | 34.0 ± 7.0 | 0.44 | 1.7(4.1) | 0.7(3.7) | 0.92 |
SBP (mmHg) | 117 ± 9.0 | 116 ± 14.6 | 0.68 | 121 ± 15.6 | 122 ± 12.5 | 0.75 | −0.9 ± 7.8 | 1.1 ± 7.6 | 0.42 |
DBP (mmHg) | 69.0 (12.5) | 73.0 (18.8) | 0.55 | 80.9 ± 10.7 | 80.6 ± 10.7 | 0.1 | 1.7 ± 11.8 | -0.2 ± 6.9 | 0.55 |
hs-CRP (mg/L) | 2.6 (7.9) | 2.3 (6.3) | 0.69 | 2.7 (8.1) | 3.4 (8.5) | 0.14 | 17.7 ± 67.0 | 15.6 ± 45.5 | 0.91 |
TC (mmol/L) | 4.9 (1.0) | 4.9 (1.1) | 0.24 | 4.9 ± 0.8 | 4.9 ± 0.8 | 1.00 | −2.2(19.9) | 5.3(14.9) | 0.22 |
LDL-C (mmol/L) | 3.0 ± 0.7 | 3.1 ± 0.7 | 0.29 | 3.0 ± 0.7 | 2.9 ± 0.6 | 0.65 | 7.3(19.3) | −3.3(26.9) | 0.26 |
HDL-C (mmol/L) | 1.4 ± 0.3 | 1.3 ± 0.4 | 0.88 | 1.2 (0.5) | 1.1 (0.4) | 0.11 | 0.0(17.4) | 0.0(6.3) | 1.0 |
TG (mmol/L) | 1.2 (0.8) | 1.1 (0.9) | 0.46 | 1.1 (0.8) | 1.1(1.0) | 0.12 | 13.8(45.3) | 5.9(71.3) | 0.39 |
Fasting glucose (mmol/L) | 4.7(0.5) | 4.6(0.7) | 0.30 | 4.8 ± 0.4 | 4.8 ± 0.5 | 0.76 | 3.0 ± 8.9 | 0.7 ± 7.6 | 0.55 |
Fasting insulin (µIU/mL) | 14.2 (12.8) | 12.3 (17.1) | 0.50 | 11.7 ± 6.5 | 12.8 ± 8.0 | 0.39 | 11.2 ± 43.2 | 16.3 ± 45.0 | 0.73 |
HOMA-IR | 2.9 (2.8) | 2.5 (3.9) | 0.44 | 2.1 (2.1) | 2.2 (2.8) | 0.31 | −16.3 ± 52.5 | 19.3 ± 54.3 | 0.051 |
FAI | 5.3 (5.8) | 4.9 (5.5) | 0.31 | 5.5 ± 3.1 | 5.9 ± 3.4 | 0.42 | −3.1(48.3) | 6.3(41.6) | 0.26 |
Testosterone (nmol/L) | 1.1 (0.9) | 1.1 (0.8) | 0.27 | 1.1 ± 0.4 | 1.2 ± 0.4 | 0.18 | −0.6 ± 45.3 | 11.3 ± 27.3 | 0.34 |
SHBG (nmol/L) | 24.0 (24.8) | 24.5 (19.8) | 0.72 | 19.0 (17.0) | 20.0 (13.0) | 0.57 | 1.0 ± 16.1 | 2.8 ± 17.9 | 0.74 |
ALT (IU/L) | 27.0 ± 12.2 | 22.1 ± 11.5 | 0.042 * | 24.9 ± 14.9 | 28.2 ± 14.4 | 0.039 * | −16.7 ± 25.7 | 18.6 ± 28.6 | 0.001 ** |
HA (ng/mL) | 18.5 ± 9.9 | 12.6 ± 6.7 | 0.019 * | 12.4 (9.4) | 12.9 (12.7) | 0.84 | −18.7 ± 48.0 | 9.4 ± 58.6 | 0.12 |
PIIINP (ng/mL) | 7.5 ± 2.0 | 6.5 ± 2.0 | 0.78 | 6.6 (2.5) | 6.5 (2.2) | 0.66 | −10.2 ± 31.2 | 4.6 ± 30.3 | 0.15 |
TIMP-1 (ng/mL) | 156 (55.4) | 154 (55.3) | 0.45 | 164 ± 42 | 154 ± 44 | 0.19 | −0.9(54.1) | −8.3(24.3) | 0.71 |
ELF Score | 8.1 ± 0.5 | 7.6 ± 0.8 | 0.022 * | 7.8 ± 0.6 | 7.7 ± 0.7 | 0.68 | −5.9 ± 10.2 | −0.6 ± 9.7 | 0.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, Z.; Papageorgiou, M.; Deshmukh, H.; Kilpatrick, E.S.; Mann, V.; Corless, L.; Abouda, G.; Rigby, A.S.; Atkin, S.L.; Sathyapalan, T. A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome. Nutrients 2019, 11, 188. https://doi.org/10.3390/nu11010188
Javed Z, Papageorgiou M, Deshmukh H, Kilpatrick ES, Mann V, Corless L, Abouda G, Rigby AS, Atkin SL, Sathyapalan T. A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome. Nutrients. 2019; 11(1):188. https://doi.org/10.3390/nu11010188
Chicago/Turabian StyleJaved, Zeeshan, Maria Papageorgiou, Harshal Deshmukh, Eric S. Kilpatrick, Vincent Mann, Lynsey Corless, George Abouda, Alan S. Rigby, Stephen L. Atkin, and Thozhukat Sathyapalan. 2019. "A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome" Nutrients 11, no. 1: 188. https://doi.org/10.3390/nu11010188
APA StyleJaved, Z., Papageorgiou, M., Deshmukh, H., Kilpatrick, E. S., Mann, V., Corless, L., Abouda, G., Rigby, A. S., Atkin, S. L., & Sathyapalan, T. (2019). A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome. Nutrients, 11(1), 188. https://doi.org/10.3390/nu11010188