Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers
Abstract
1. Introduction
2. Methods
3. Anticancer Effects of Phytochemicals on Thyroid Cancers
3.1. Resveratrol
3.2. Isoflavone
3.3. Curcumin
3.4. Miscellaneous Phytochemicals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DTC | differentiated thyroid cancer |
PTC | papillary thyroid cancer |
FTC | follicular thyroid cancer |
MTC | medullary thyroid cancer |
ATC | anaplastic thyroid cancer |
RET | rearranged during transfection |
ROS | reactive oxygen species |
RA | retinoic acid |
RAR | retinoic acid receptor |
CSCs | cancer stem cells |
EGF | epidermal growth factor |
TGF-α | transforming growth factor alpha |
TKI | tyrosine kinase inhibitor |
PDT | photodynamic therapy |
PS | photosensitizers |
HIF-1 | hypoxia inducible factor-1 |
HRE | hypoxia response element |
MMP-9 | matrix metallopeptidase 9 |
COX-2 | cyclooxygenase-2 |
ERK | extracellular signal-regulated kinase |
EMT | epithelial-mesenchymal transition |
NF-κB | nuclear factor-κB |
EGCG | epigallocatechin-3-gallate |
NIS | Na+/I-symporter |
Hsp | heat shock protein |
EGFR | epidermal growth factor receptor |
References
- GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Carling, T.; Udelsman, R. Thyroid cancer. Annu. Rev. Med. 2014, 65, 125–137. [Google Scholar] [CrossRef]
- Genetics of endocrine and neuroendocrine neoplasias (pdq(r)): Health professional version. In Pdq Cancer Information Summaries; National Cancer Institute (NCI): Bethesda, MD, USA, 2002.
- Drozd, V.M.; Branovan, I.; Shiglik, N.; Biko, J.; Reiners, C. Thyroid cancer induction: Nitrates as independent risk factors or risk modulators after radiation exposure, with a focus on the chernobyl accident. Eur. Thyroid J. 2018, 7, 67–74. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef]
- Cornett, W.R.; Sharma, A.K.; Day, T.A.; Richardson, M.S.; Hoda, R.S.; van Heerden, J.A.; Fernandes, J.K. Anaplastic thyroid carcinoma: An overview. Curr. Oncol. Rep. 2007, 9, 152–158. [Google Scholar] [CrossRef]
- Figlioli, G.; Landi, S.; Romei, C.; Elisei, R.; Gemignani, F. Medullary thyroid carcinoma (MTC) and ret proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat. Res. 2013, 752, 36–44. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Lamartina, L.; Grani, G.; Durante, C.; Filetti, S. Recent advances in managing differentiated thyroid cancer. F1000Research 2018, 7, 86. [Google Scholar] [CrossRef]
- Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed. 2015, 5, 84–97. [Google Scholar] [PubMed]
- Zamora-Ros, R.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.; Berenguer, T.; Jakszyn, P.; Martinez, C.; Sanchez, M.J.; Navarro, C.; Chirlaque, M.D.; Tormo, M.J.; et al. Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a spanish population: European prospective investigation into cancer and nutrition (EPIC)-Spain cohort. Br. J. Nutr. 2008, 100, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, K.; Cheng, L.; Yan, B.; Qian, W.; Cao, J.; Li, J.; Wu, E.; Ma, Q.; Yang, W. Resveratrol and cancer treatment: Updates. Ann. N. Y. Acad. Sci. 2017, 1403, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid. Med. Cell. Longev. 2017, 2017, 1459497. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, E.; Arslan, A.K.K.; Yerer, M.B.; Bishayee, A. Resveratrol and diabetes: A critical review of clinical studies. Biomed. Pharmacother. 2017, 95, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients 2017, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Deng, H.B.; Wang, Y.H.; Guo, J.J. Resveratrol inhibits the growth of gastric cancer via the wnt/beta-catenin pathway. Oncol. Lett. 2018, 16, 1579–1583. [Google Scholar] [PubMed]
- Ferraz da Costa, D.C.; Campos, N.P.C.; Santos, R.A.; Guedes-da-Silva, F.H.; Martins-Dinis, M.; Zanphorlin, L.; Ramos, C.; Rangel, L.P.; Silva, J.L. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget 2018, 9, 29112–29122. [Google Scholar]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef] [PubMed]
- Little, J.B. Radiation carcinogenesis. Carcinogenesis 2000, 21, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Sadani, G.R.; Nadkarni, G.D. Changes in lipid peroxide levels and the activity of reactive oxygen scavenging systems in thyroid tissue after exposure to radioactive iodine in rats. Thyroid 1997, 7, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Hosseinimehr, S.J.; Hosseini, S.A. Resveratrol sensitizes selectively thyroid cancer cell to 131-iodine toxicity. J. Toxicol. 2014, 2014, 839597. [Google Scholar] [CrossRef] [PubMed]
- Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem. 2012, 77, 3868–3877. [Google Scholar] [CrossRef]
- Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of notch1 signaling and suppresses cell growth. Mol. Cancer Ther. 2013, 12, 1276–1287. [Google Scholar] [CrossRef]
- Truong, M.; Cook, M.R.; Pinchot, S.N.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces notch2-mediated apoptosis and suppression of neuroendocrine markers in medullary thyroid cancer. Ann. Surg. Oncol. 2011, 18, 1506–1511. [Google Scholar] [CrossRef]
- Shih, A.; Davis, F.B.; Lin, H.Y.; Davis, P.J. Resveratrol induces apoptosis in thyroid cancer cell lines via a mapk- and p53-dependent mechanism. J. Clin. Endocrinol. Metab. 2002, 87, 1223–1232. [Google Scholar] [CrossRef]
- Schmutzler, C.; Kohrle, J. Retinoic acid redifferentiation therapy for thyroid cancer. Thyroid 2000, 10, 393–406. [Google Scholar] [CrossRef]
- Li, Y.T.; Tian, X.T.; Wu, M.L.; Zheng, X.; Kong, Q.Y.; Cheng, X.X.; Zhu, G.W.; Liu, J.; Li, H. Resveratrol suppresses the growth and enhances retinoic acid sensitivity of anaplastic thyroid cancer cells. Int. J. Mol. Sci. 2018, 19, 1030. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, B.; Song, X.; Kong, Q.Y.; Wu, M.L.; Qiu, Z.W.; Li, H.; Liu, J. Preventive potential of resveratrol in carcinogen-induced rat thyroid tumorigenesis. Nutrients 2018, 10, 279. [Google Scholar] [CrossRef]
- Hardin, H.; Yu, X.M.; Harrison, A.D.; Larrain, C.; Zhang, R.; Chen, J.; Chen, H.; Lloyd, R.V. Generation of novel thyroid cancer stem-like cell clones: Effects of resveratrol and valproic acid. Am. J. Pathol. 2016, 186, 1662–1673. [Google Scholar] [CrossRef]
- Murphy, P.A.; Barua, K.; Hauck, C.C. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 777, 129–138. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Duke, J.A.; Brielmann, H.; Boik, J.; Hoyt, J.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 1997, 3, 7–12. [Google Scholar] [CrossRef]
- Alves, R.C.; Almeida, I.M.; Casal, S.; Oliveira, M.B. Isoflavones in coffee: Influence of species, roast degree, and brewing method. J. Agric. Food Chem. 2010, 58, 3002–3007. [Google Scholar] [CrossRef]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar]
- McCabe, M.J., Jr.; Orrenius, S. Genistein induces apoptosis in immature human thymocytes by inhibiting topoisomerase-II. Biochem. Biophys. Res. Commun. 1993, 194, 944–950. [Google Scholar] [CrossRef]
- Huang, R.Q.; Dillon, G.H. Direct inhibition of glycine receptors by genistein, a tyrosine kinase inhibitor. Neuropharmacology 2000, 39, 2195–2204. [Google Scholar] [CrossRef]
- Hoelting, T.; Siperstein, A.E.; Clark, O.H.; Duh, Q.Y. Epidermal growth factor enhances proliferation, migration, and invasion of follicular and papillary thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab. 1994, 79, 401–408. [Google Scholar]
- Pino, M.S.; Shrader, M.; Baker, C.H.; Cognetti, F.; Xiong, H.Q.; Abbruzzese, J.L.; McConkey, D.J. Transforming growth factor alpha expression drives constitutive epidermal growth factor receptor pathway activation and sensitivity to gefitinib (iressa) in human pancreatic cancer cell lines. Cancer Res. 2006, 66, 3802–3812. [Google Scholar] [CrossRef]
- Radha, V.; Nambirajan, S.; Swarup, G. Association of lyn tyrosine kinase with the nuclear matrix and cell-cycle-dependent changes in matrix-associated tyrosine kinase activity. Eur. J. Biochem. 1996, 236, 352–359. [Google Scholar] [CrossRef]
- Holting, T.; Siperstein, A.E.; Clark, O.H.; Duh, Q.Y. Epidermal growth factor (egf)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the egf receptor and tyrosine kinase in vitro. Eur. J. Endocrinol. 1995, 132, 229–235. [Google Scholar] [CrossRef]
- Wells, S.A., Jr.; Franz, C. Medullary carcinoma of the thyroid gland. World J. Surg. 2000, 24, 952–956. [Google Scholar] [CrossRef]
- Liu, Z.; Falola, J.; Zhu, X.; Gu, Y.; Kim, L.T.; Sarosi, G.A.; Anthony, T.; Nwariaku, F.E. Antiproliferative effects of src inhibition on medullary thyroid cancer. J. Clin. Endocrinol. Metab. 2004, 89, 3503–3509. [Google Scholar] [CrossRef]
- Cohen, M.S.; Hussain, H.B.; Moley, J.F. Inhibition of medullary thyroid carcinoma cell proliferation and ret phosphorylation by tyrosine kinase inhibitors. Surgery 2002, 132, 960–966, discussion 966–967. [Google Scholar] [CrossRef]
- Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta 2007, 1776, 86–107. [Google Scholar] [CrossRef]
- Ahn, J.C.; Biswas, R.; Chung, P.S. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg. Med. 2012, 44, 840–849. [Google Scholar] [CrossRef]
- Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: Evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fund. Clin. Pharmacol. 2013, 27, 557–569. [Google Scholar] [CrossRef]
- Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Targeting nuclear factor-kappa b activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol. Cancer Res. 2008, 6, 1059–1070. [Google Scholar] [CrossRef]
- Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing akt and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther. 2008, 7, 1789–1796. [Google Scholar] [CrossRef]
- Ozturk, S.A.; Alp, E.; Yar Saglam, A.S.; Konac, E.; Menevse, E.S. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J. Cancer Res. Ther. 2018, 14, 328–334. [Google Scholar] [CrossRef]
- Somjen, D.; Grafi-Cohen, M.; Katzburg, S.; Weisinger, G.; Izkhakov, E.; Nevo, N.; Sharon, O.; Kraiem, Z.; Kohen, F.; Stern, N. Anti-thyroid cancer properties of a novel isoflavone derivative, 7-(o)-carboxymethyl daidzein conjugated to n-t-boc-hexylenediamine in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 2011, 126, 95–103. [Google Scholar] [CrossRef]
- Somjen, D.; Grafi-Cohen, M.; Weisinger, G.; Izkhakov, E.; Sharon, O.; Kraiem, Z.; Fliss, D.; Zikk, D.; Kohen, F.; Stern, N. Growth inhibition of human thyroid carcinoma and goiter cells in vitro by the isoflavone derivative 7-(o)-carboxymethyl daidzein conjugated to n-t-boc-hexylenediamine. Thyroid 2012, 22, 809–813. [Google Scholar] [CrossRef]
- Greenman, Y.; Grafi-Cohen, M.; Sharon, O.; Knoll, E.; Kohen, F.; Stern, N.; Somjen, D. Anti-proliferative effects of a novel isoflavone derivative in medullary thyroid carcinoma: An in vitro study. J. Steroid Biochem. Mol. Biol. 2012, 132, 256–261. [Google Scholar] [CrossRef]
- Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci. 2005, 1056, 206–217. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef]
- Ryan, H.E.; Poloni, M.; McNulty, W.; Elson, D.; Gassmann, M.; Arbeit, J.M.; Johnson, R.S. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000, 60, 4010–4015. [Google Scholar]
- Greijer, A.E.; van der Wall, E. The role of hypoxia inducible factor 1 (hif-1) in hypoxia induced apoptosis. J. Clin. Pathol. 2004, 57, 1009–1014. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, L.; Cheng, X.; Lin, X.F.; Lu, R.R.; Bao, J.D.; Yu, H.X. Curcumin inhibits hypoxia-induced migration in k1 papillary thyroid cancer cells. Exp. Biol. Med. 2015, 240, 925–935. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhang, L.; Yu, H.X.; Bao, J.D.; Lu, R.R. Curcumin inhibits the metastasis of k1 papillary thyroid cancer cells via modulating e-cadherin and matrix metalloproteinase-9 expression. Biotechnol. Lett. 2013, 35, 995–1000. [Google Scholar] [CrossRef]
- Song, F.; Zhang, L.; Yu, H.X.; Lu, R.R.; Bao, J.D.; Tan, C.; Sun, Z. The mechanism underlying proliferation-inhibitory and apoptosis-inducing effects of curcumin on papillary thyroid cancer cells. Food Chem. 2012, 132, 43–50. [Google Scholar] [CrossRef]
- Thant, A.A.; Nawa, A.; Kikkawa, F.; Ichigotani, Y.; Zhang, Y.; Sein, T.T.; Amin, A.R.; Hamaguchi, M. Fibronectin activates matrix metalloproteinase-9 secretion via the mek1-mapk and the pi3k-akt pathways in ovarian cancer cells. Clin. Exp. Metast. 2000, 18, 423–428. [Google Scholar] [CrossRef]
- Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of pi3k/akt signaling pathway. Gene 2014, 546, 226–232. [Google Scholar] [CrossRef]
- Queiroga, F.L.; Pires, I.; Parente, M.; Gregorio, H.; Lopes, C.S. Cox-2 over-expression correlates with vegf and tumour angiogenesis in canine mammary cancer. Vet. J. 2011, 189, 77–82. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Xie, R.; Chen, W.; Lv, Y. Combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells via pi3k/akt and erk pathways. Nat. Prod. Res. 2016, 30, 1858–1861. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, X.; Gao, Y.; Zhang, C.; Bao, J.; Guan, H.; Yu, H.; Lu, R.; Xu, Q.; Sun, Y. Curcumin inhibits metastasis in human papillary thyroid carcinoma bcpap cells via down-regulation of the tgf-beta/smad2/3 signaling pathway. Exp. Cell Res. 2016, 341, 157–165. [Google Scholar] [CrossRef]
- Li, F.; Sethi, G. Targeting transcription factor nf-kappab to overcome chemoresistance and radioresistance in cancer therapy. Biochim. Biophys. Acta 2010, 1805, 167–180. [Google Scholar]
- Schwertheim, S.; Wein, F.; Lennartz, K.; Worm, K.; Schmid, K.W.; Sheu-Grabellus, S.Y. Curcumin induces g2/m arrest, apoptosis, nf-kappab inhibition, and expression of differentiation genes in thyroid carcinoma cells. J. Cancer Res. Clin. Oncol. 2017, 143, 1143–1154. [Google Scholar] [CrossRef]
- Hong, J.M.; Park, C.S.; Nam-Goong, I.S.; Kim, Y.S.; Lee, J.C.; Han, M.W.; Choi, J.I.; Kim, Y.I.; Kim, E.S. Curcumin enhances docetaxel-induced apoptosis of 8505c anaplastic thyroid carcinoma cells. Endocrinol. Metab. 2014, 29, 54–61. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J.; Hosseini, S.A. Radiosensitive effect of curcumin on thyroid cancer cell death induced by radioiodine-131. Interdiscip. Toxicol. 2014, 7, 85–88. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, X.; Gao, Y.; Bao, J.; Guan, H.; Lu, R.; Yu, H.; Xu, Q.; Sun, Y. Induction of ros-independent DNA damage by curcumin leads to g2/m cell cycle arrest and apoptosis in human papillary thyroid carcinoma bcpap cells. Food Funct. 2016, 7, 315–325. [Google Scholar] [CrossRef]
- Perna, A.; De Luca, A.; Adelfi, L.; Pasquale, T.; Varriale, B.; Esposito, T. Effects of different extracts of curcumin on tpc1 papillary thyroid cancer cell line. BMC Complement. Altern. Med. 2018, 18, 63. [Google Scholar] [CrossRef]
- Schroder-van der Elst, J.P.; van der Heide, D.; Romijn, J.A.; Smit, J.W. Differential effects of natural flavonoids on growth and iodide content in a human na*/i-symporter-transfected follicular thyroid carcinoma cell line. Eur. J. Endocrinol. 2004, 150, 557–564. [Google Scholar] [CrossRef]
- Schroder-van der Elst, J.P.; Smit, J.W.; Romijn, H.A.; van der Heide, D. Dietary flavonoids and iodine metabolism. BioFactors 2003, 19, 171–176. [Google Scholar] [CrossRef]
- Mutlu Altundag, E.; Kasaci, T.; Yilmaz, A.M.; Karademir, B.; Kocturk, S.; Taga, Y.; Yalcin, A.S. Quercetin-induced cell death in human papillary thyroid cancer (b-cpap) cells. J. Thyroid Res. 2016, 2016, 9843675. [Google Scholar] [CrossRef]
- Mutlu Altundag, E.; Mine Yilmaz, A.; Kasaci, T.; Corek, C.; Taga, Y.; Suha Yalcin, A. The role of hsp90 in quercetin-induced apoptosis in human papillary thyroid (b-cpap) cancer cells. Free Radic. Biol. Med. 2014, 75 (Suppl. 1), S43. [Google Scholar] [CrossRef]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, M.; Fu, Q.; Li, J.; Sun, H. Targeted near infrared hyperthermia combined with immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment. Oncotarget 2016, 7, 6878–6890. [Google Scholar] [CrossRef]
- Kang, H.J.; Youn, Y.K.; Hong, M.K.; Kim, L.S. Antiproliferation and redifferentiation in thyroid cancer cell lines by polyphenol phytochemicals. J. Korean Med. Sci. 2011, 26, 893–899. [Google Scholar] [CrossRef]
- Lim, Y.C.; Cha, Y.Y. Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of egfr/erk pathway and cyclin b1/cdk1 complex. J. Surg. Oncol. 2011, 104, 776–780. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Doseff, A.I.; Ringel, M.D.; Saji, M.; Rousset, B.; Zhang, X.; Jhiang, S.M. Apigenin in combination with akt inhibition significantly enhances thyrotropin-stimulated radioiodide accumulation in thyroid cells. Thyroid 2014, 24, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.; Liebermann, D.A. Apoptotic signaling by c-myc. Oncogene 2008, 27, 6462–6472. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Apigenin induces c-myc-mediated apoptosis in fro anaplastic thyroid carcinoma cells. Mol. Cell. Endocrinol. 2013, 369, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, X.; Gao, Y.; Zheng, J.; Xu, Q.; Sun, Y.; Guan, H.; Yu, H.; Sun, Z. Apigenin induces autophagic cell death in human papillary thyroid carcinoma bcpap cells. Food Funct. 2015, 6, 3464–3472. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.N.; Chu, S.C.; Kuo, W.H.; Chou, M.Y.; Lin, J.K.; Hsieh, Y.S. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells. J. Agric. Food Chem. 2011, 59, 3836–3844. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Pannu, N.; Bhatnagar, A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother. 2019, 109, 2237–2251. [Google Scholar] [CrossRef]
Phytochemicals | Anti-Cancer Effect | References |
---|---|---|
Resveratrol |
| [31] [25] [27,28,29,32] [33] |
Isoflavones |
| [46,54,55] [43] [52,53,55] [48] |
Curcumin |
| [62] [60] [61,67] [61,64] [69,71] [66,72] [73] |
miscellaneous |
| [75] [80] [76,77] [79] [81,86] [86] [82] [84] [85] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-J.; Hwang, K.-A.; Choi, K.-C. Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers. Nutrients 2019, 11, 125. https://doi.org/10.3390/nu11010125
Shin H-J, Hwang K-A, Choi K-C. Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers. Nutrients. 2019; 11(1):125. https://doi.org/10.3390/nu11010125
Chicago/Turabian StyleShin, Hye-Ji, Kyung-A Hwang, and Kyung-Chul Choi. 2019. "Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers" Nutrients 11, no. 1: 125. https://doi.org/10.3390/nu11010125
APA StyleShin, H.-J., Hwang, K.-A., & Choi, K.-C. (2019). Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers. Nutrients, 11(1), 125. https://doi.org/10.3390/nu11010125