Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = radio iodine therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4222 KiB  
Article
Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications
by Mazen Abdulrahman Binmujlli
Molecules 2024, 29(17), 4203; https://doi.org/10.3390/molecules29174203 - 4 Sep 2024
Cited by 1 | Viewed by 1534
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds’ binding affinities and mechanisms to the [...] Read more.
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds’ binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (−11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (−10.68 kcal/mol) and the co-crystallized ligand (−9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme’s compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (−23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (−20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (−16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment. Full article
Show Figures

Figure 1

21 pages, 2664 KiB  
Review
Radio-Iodide Treatment: From Molecular Aspects to the Clinical View
by Antonio De la Vieja and Garcilaso Riesco-Eizaguirre
Cancers 2021, 13(5), 995; https://doi.org/10.3390/cancers13050995 - 27 Feb 2021
Cited by 33 | Viewed by 9012
Abstract
Thyroid radio-iodide therapy (RAI) is one of the oldest known and used targeted therapies. In thyroid cancer, it has been used for more than eight decades and is still being used to improve thyroid tumor treatment to eliminate remnants after thyroid surgery, and [...] Read more.
Thyroid radio-iodide therapy (RAI) is one of the oldest known and used targeted therapies. In thyroid cancer, it has been used for more than eight decades and is still being used to improve thyroid tumor treatment to eliminate remnants after thyroid surgery, and tumor metastases. Knowledge at the molecular level of the genes/proteins involved in the process has led to improvements in therapy, both from the point of view of when, how much, and how to use the therapy according to tumor type. The effectiveness of this therapy has spread into other types of targeted therapies, and this has made sodium/iodide symporter (NIS) one of the favorite theragnostic tools. Here we focus on describing the molecular mechanisms involved in radio-iodide therapy and how the alteration of these mechanisms in thyroid tumor progression affects the diagnosis and results of therapy in the clinic. We analyze basic questions when facing treatment, such as: (1) how the incorporation of radioiodine in normal, tumor, and metastatic thyroid cells occurs and how it is regulated; (2) the pros and cons of thyroid hormonal deprivation vs. recombinant human Thyroid Stimulating Hormone (rhTSH) in radioiodine residence time, treatment efficacy, thyroglobulin levels and organification, and its influence on diagnostic imaging tests and metastasis treatment; and (3) the effect of stunning and the possible causes. We discuss the possible incorporation of massive sequencing data into clinical practice, and we conclude with a socioeconomical and clinical vision of the above aspects. Full article
(This article belongs to the Special Issue Advances in Thyroid Carcinoma)
Show Figures

Graphical abstract

11 pages, 234 KiB  
Review
Antitumor Effect of Various Phytochemicals on Diverse Types of Thyroid Cancers
by Hye-Ji Shin, Kyung-A Hwang and Kyung-Chul Choi
Nutrients 2019, 11(1), 125; https://doi.org/10.3390/nu11010125 - 9 Jan 2019
Cited by 37 | Viewed by 6531
Abstract
Thyroid cancers developed from the tissues of the thyroid gland are classified into papillary (PTC), follicular (FTC), medullary (MTC), and anaplastic thyroid cancer (ATC). Although thyroid cancers have been generally known as mild forms of cancer, undifferentiated MTC and ATC have a more [...] Read more.
Thyroid cancers developed from the tissues of the thyroid gland are classified into papillary (PTC), follicular (FTC), medullary (MTC), and anaplastic thyroid cancer (ATC). Although thyroid cancers have been generally known as mild forms of cancer, undifferentiated MTC and ATC have a more unfavorable prognosis than differentiated PTC and FTC because they are more aggressive and early metastatic. A variety of therapies such as surgery, radiotherapy, and chemotherapy have been currently used to treat thyroid cancer, but they still have limitations including drug resistance or unfavorable side effects. Phytochemicals are plant-derived chemicals having various physiological activities that are expected to be effective in cancer treatment. In this review, anticancer efficacy of phytochemicals, such as resveratrol, genistein, curcumin, and other substances in each type of thyroid cancer was introduced with their chemopreventive mechanisms. English articles related with thyroid cancer and anti-thyroid cancer of phytochemicals were searched from PubMed and Google Scholar. This article mainly focused on in vitro or animal studies on phytochemicals with anti-thyroid cancer activity. These various phytochemicals have been shown to induce apoptosis in all types of thyroid cancer cells, inhibit cell proliferation and invasion, and to be helpful in enhancing the effect of radioiodine therapy that is a typical therapy to thyroid cancer. These results suggest that thyroid cancer can be more effectively treated by the combinations of phytochemicals and the existing therapies or substances. Full article
(This article belongs to the Special Issue Steroid Hormones and Human Health)
Back to TopTop