Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Processing
2.2.1. Biochemical Measurements
2.2.2. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miettinen, T.A.; Tilvis, R.S.; Kesaniemi, Y.A. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am. J. Epidemiol. 1990, 131, 20–31. [Google Scholar] [CrossRef]
- Field, F.J.; Born, E.; Mathur, S.N. Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells. J. Lipid Res. 1997, 38, 348–360. [Google Scholar] [PubMed]
- Plat, J.; Mensink, R.P. Effects of plant stanol esters on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase mRNA expression in mononuclear blood cells of healthy men and women. FASEB J. 2002, 16, 258–260. [Google Scholar] [CrossRef]
- Yang, C.; Yu, L.; Li, W.; Xu, F.; Cohen, J.C.; Hobbs, H.H. Disruption of cholesterol homeostasis by plant sterols. J. Clin. Investig. 2004, 114, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Plat, J.; Mensink, R.P. Increased intestinal ABCA1 expression contributes to the decrease in cholesterol absorption after plant stanol consumption. FASEB J. 2002, 16, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Vanmierlo, T.; Bogie, J.F.; Mailleux, J.; Vanmol, J.; Lutjohann, D.; Mulder, M.; Hendriks, J.J. Plant sterols: Friend or foe in CNS disorders? Prog. Lipid Res. 2015, 58, 26–39. [Google Scholar] [CrossRef] [PubMed]
- De Smet, E.; Mensink, R.P.; Plat, J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012, 56, 1058–1072. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegard, L.; Jessup, W.; Jones, P.J.; Lutjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Ras, R.T.; Hiemstra, H.; Lin, Y.; Vermeer, M.A.; Duchateau, G.S.; Trautwein, E.A. Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations--a meta-analysis of randomized controlled studies. Atherosclerosis 2013, 230, 336–346. [Google Scholar] [CrossRef]
- Bekkering, S.; Arts, R.J.W.; Novakovic, B.; Kourtzelis, I.; van der Heijden, C.; Li, Y.; Popa, C.D.; Ter Horst, R.; van Tuijl, J.; Netea-Maier, R.T.; et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell 2018, 172, 135–146 e139. [Google Scholar] [CrossRef]
- Spann, N.J.; Garmire, L.X.; McDonald, J.G.; Myers, D.S.; Milne, S.B.; Shibata, N.; Reichart, D.; Fox, J.N.; Shaked, I.; Heudobler, D.; et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012, 151, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Calkins, K.L.; DeBarber, A.; Steiner, R.D.; Flores, M.J.; Grogan, T.R.; Henning, S.M.; Reyen, L.; Venick, R.S. Intravenous Fish Oil and Pediatric Intestinal Failure-Associated Liver Disease: Changes in Plasma Phytosterols, Cytokines, and Bile Acids and Erythrocyte Fatty Acids. JPEN J. Parenter. Enter. Nutr. 2018, 42, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Thelen, K.M.; Laaksonen, R.; Paiva, H.; Lehtimaki, T.; Lutjohann, D. High-dose statin treatment does not alter plasma marker for brain cholesterol metabolism in patients with moderately elevated plasma cholesterol levels. J. Clin. Pharmacol. 2006, 46, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Hallikainen, M.; Huikko, L.; Kontra, K.; Nissinen, M.; Piironen, V.; Miettinen, T.; Gylling, H. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome. Nutr. Clin. Pract. 2008, 23, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kurvinen, A.; Nissinen, M.J.; Andersson, S.; Korhonen, P.; Ruuska, T.; Taimisto, M.; Kalliomaki, M.; Lehtonen, L.; Sankilampi, U.; Arikoski, P.; et al. Parenteral plant sterols and intestinal failure-associated liver disease in neonates. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Kurvinen, A.; Nissinen, M.J.; Gylling, H.; Miettinen, T.A.; Lampela, H.; Koivusalo, A.I.; Rintala, R.J.; Pakarinen, M.P. Effects of long-term parenteral nutrition on serum lipids, plant sterols, cholesterol metabolism, and liver histology in pediatric intestinal failure. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Ellegard, L.; Sunesson, A.; Bosaeus, I. High serum phytosterol levels in short bowel patients on parenteral nutrition support. Clin. Nutr. 2005, 24, 415–420. [Google Scholar] [CrossRef]
- Carulli, L.; Del Puppo, M.; Anzivino, C.; Zambianchi, L.; Gabbi, C.; Baldelli, E.; Odoardi, M.R.; Loria, P.; Carulli, N.; Bertolotti, M. In vivo degradation of cholesterol to bile acids is reduced in patients receiving parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2014, 38, 220–226. [Google Scholar] [CrossRef]
- Pakarinen, M.P.; Kurvinen, A.; Gylling, H.; Miettinen, T.A.; Pesonen, M.; Kallio, M.; Koivusalo, A.I.; Nissinen, M.J. Cholesterol metabolism in pediatric short bowel syndrome after weaning off parenteral nutrition. Dig. Liver Dis. 2010, 42, 554–559. [Google Scholar] [CrossRef]
- Cohen, D.E. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J. Clin. Lipidol. 2008, 2, S1–S3. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Kesaniemi, Y.A. Cholesterol absorption: Regulation of cholesterol synthesis and elimination and within-population variations of serum cholesterol levels. Am. J. Clin. Nutr. 1989, 49, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Cofan, M.; Escurriol, V.; Garcia-Otin, A.L.; Moreno-Iribas, C.; Larranaga, N.; Sanchez, M.J.; Tormo, M.J.; Redondo, M.L.; Gonzalez, C.A.; Corella, D.; et al. Association of plasma markers of cholesterol homeostasis with metabolic syndrome components. A cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Lupattelli, G.; De Vuono, S.; Mannarino, E. Patterns of cholesterol metabolism: Pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 620–627. [Google Scholar] [CrossRef] [PubMed]
SO | FO | |
---|---|---|
Soy bean oil | 100% | - |
Fish oil | - | 100% |
Cholesterol (µg/mL) | 274.1 ± 3.6 | 265.0 ± 3.8 |
Sitosterol (µg/mL) | 302.6 ± 2.0 | ND |
Campesterol (µg/mL) | 55.4 ± 30.5 | 1.0 ± 0.1 |
Stigmasterol (µg/mL) | 65.1 ± 0.5 | 1.4 ± 0.4 |
Sex | Age (mo) | Diagnosis | PN Baseline kkd | EN Baseline kkd | PN 6 mo kkd | EN 6 mo kkd | SO * g/kg/day | FO g/kg/day |
---|---|---|---|---|---|---|---|---|
Male | 1.1 | Gastroschisis | 91 | 0 | 103 | 0 | 1 | 1 |
Male | 3.9 | NEC | 69 | 0 | 61 | 0 | 0.9 | 1 |
Female | 6.8 | Gastroschisis | 53 | 37 | 44 | 42 | 0.9 | 1 |
Male | 2.6 | Atresia | 89 | 10 | 41 | 61 | 1 | 1 |
Male | 2 | Long segment Hirschsprung’s | 103 | 7 | 83 | 0 | 2 | 0.9 |
Female | 42.5 | Microvillus Inclusion Disorder | 84 | 0 | 87 | 0 | 0.6 | 1 |
Male | 76.2 | Gastroschisis | 66 | 0 | 69 | 0 | 1.8 | 1 |
Male | 98.7 | MMIHS | 66 | 0 | 66 | 0 | 1.6 | 1 |
Male | 70.7 | Malrotation | 58 | 3.1 | 58 | 3 | 1.3 | 1 |
Sex | Gestational Age Weeks | PN Baseline | EN Baseline | PN 3 Weeks | EN 3 Weeks | SO Baseline g/kg/day | SO 3 Weeks g/kg/day |
---|---|---|---|---|---|---|---|
Female | 31 | 72 | 0 | 106 | 0 | 1 | 2.9 |
Female | 29 | 56 | 0 | 0 | 86 | 1 | 0 |
Female | 29 | 55 | 4 | 0 | 25 | 1 | 0 |
Female | 26 | 67 | 0 | 106 | 27 | 1.5 | 2.9 |
Male | 37 | 99 | 0 | 76 | 37 | 1.6 | 3 |
Baseline (on SO) | 3 Months (on FO) | 6 Months (on FO) | |
---|---|---|---|
Total bilirubin (mg/dL) | 5.5 ± 4.8 | 2.7 ± 1.3 | 1.0 ± 0.8 * |
Conjugated bilirubin (mg/dL) | 4.5 ± 3.8 | 2.1 ± 0.8 # | 0.7 ± 0.5 * |
Alanine aminotransferase (IU/L) | 128 ± 104 | 70 ± 53 # | 59 ± 55 |
Aspartate aminotransferase (IU/L) | 161 ± 142 | 80 ± 64 * | 67 ± 63 # |
Baseline | 3 Months | 6 Months | |
---|---|---|---|
(on SO) | (on FO) | (on FO) | |
Cholesterol (µmol/L) | 3.1 ± 1.2 | 3.4 ± 1.5 | 3.0 ± 0.7 |
Sitosterol (µmol/L) | 318.6 ± 176.8 | 73.3 ± 124.3 * | 27.1 ± 42.4 *$ |
Campesterol (µmol/L) | 96.7 ± 53.7 | 31.3 ± 40.7 * | 14.6 ± 17.2 *$ |
Stigmasterol (µmol/L) | 55.3 ± 36.2 | 11.0 ± 20.3 * | 3.5 ± 5.3 *$ |
Lathosterol (µmol/L) | 4.8 ± 3.0 | 9.9 ± 4.8 * | 12.6 ± 8.4 * |
Cholestanol (µmol/L) | 22.2 ± 6.4 | 15.7 ± 9.2 | 11.4 ± 4.6 * |
Baseline (on SO) | 3 Months (on FO) | 6 Months (on FO) | |
---|---|---|---|
Sitosterol (µmol/mmol cholesterol) | 99.6 ± 24.1 | 18.3 ± 25.9 * | 8.8 ± 13.7 *$ |
Campesterol (µmol/mmol cholesterol) | 30.0 ± 7.4 | 8.1 ± 8.3 * | 4.7 ± 5.5 *$ |
Stigmasterol (µmol/mmol cholesterol) | 17.0 ± 6.7 | 2.8 ± 4.3 * | 1.2 ± 1.7 *$ |
Lathosterol (µmol/mmol cholesterol) | 1.6 ± 0.9 | 3.0 ± 1.1 * | 4.0 ± 2.2 * |
Cholestanol (µmol/mmol cholesterol) | 7.5 ± 1.3 | 4.6 ± 2.0 * | 3.9 ± 1.6 *$ |
Baseline | 3 Weeks | |
---|---|---|
Cholesterol (mmol/L) | 3.11 ± 0.64 | 2.72 ± 0.29 |
Sitosterol (µmol/L) | 20.5 ± 13.9 | 91.8 ± 51.0 * |
Campesterol (µmol/L) | 6.1 ± 4.6 | 30.5 ± 19.6 * |
Stigmasterol (µmol/L) | 4.1 ± 2.9 | 15.1 ± 8.4 * |
Lathosterol (µmol/L) | 3.0 ± 1.3 | 4.6 ± 1.1 |
Cholestanol (µmol/L) | 15.9 ± 3.9 | 9.9 ± 2.8 * |
Baseline | 3 Weeks | |
---|---|---|
Sitosterol (µmol/mmol cholesterol) | 7.0 ± 5.1 | 32.6 ± 14.6 * |
Campesterol (µmol/mmol cholesterol) | 2.1 ± 1.7 | 10.8 ± 5.7 * |
Stigmasterol (µmol/mmol cholesterol) | 1.4 ± 1.2 | 5.4 ± 2.5 * |
Lathosterol (µmol/mmol cholesterol) | 1.0 ± 0.6 | 1.7 ± 0.5 |
Cholestanol (µmol/mmol cholesterol) | 5.1 ± 0.3 | 3.6 ± 0.7 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plat, J.; Baumgartner, S.; Vreugdenhil, A.C.E.; Konings, M.C.J.M.; Calkins, K.L.; Mensink, R.P. Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids. Nutrients 2019, 11, 120. https://doi.org/10.3390/nu11010120
Plat J, Baumgartner S, Vreugdenhil ACE, Konings MCJM, Calkins KL, Mensink RP. Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids. Nutrients. 2019; 11(1):120. https://doi.org/10.3390/nu11010120
Chicago/Turabian StylePlat, Jogchum, Sabine Baumgartner, Anita C.E. Vreugdenhil, Maurice C. J. M. Konings, Kara L. Calkins, and Ronald P. Mensink. 2019. "Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids" Nutrients 11, no. 1: 120. https://doi.org/10.3390/nu11010120
APA StylePlat, J., Baumgartner, S., Vreugdenhil, A. C. E., Konings, M. C. J. M., Calkins, K. L., & Mensink, R. P. (2019). Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids. Nutrients, 11(1), 120. https://doi.org/10.3390/nu11010120