Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement
2.3. Definitions
2.4. Missing Values
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borst, J.G. Protein katabolism in uraemia; effects of protein-free diet, infections, and blood-transfusions. Lancet 1948, 1, 824–829. [Google Scholar] [CrossRef]
- Giovannetti, S.; Maggiore, Q. A Low-Nitrogen Diet with Proteins of High Biological Value for Severe Chronic Uraemia. Lancet 1964, 1, 1000–1003. [Google Scholar] [CrossRef]
- Cooper, B.A.; Branley, P.; Bulfone, L.; Collins, J.F.; Craig, J.C.; Fraenkel, M.B.; Harris, A.; Johnson, D.W.; Kesselhut, J.; Li, J.J.; et al. A randomized, controlled trial of early versus late initiation of dialysis. N. Engl. J. Med. 2010, 363, 609–619. [Google Scholar] [CrossRef]
- Rosansky, S.J.; Cancarini, G.; Clark, W.F.; Eggers, P.; Germaine, M.; Glassock, R.; Goldfarb, D.S.; Harris, D.; Hwang, S.J.; Imperial, E.B.; et al. Dialysis initiation: What’s the rush? Semin. Dial. 2013, 26, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Brunori, G.; Viola, B.F.; Parrinello, G.; De Biase, V.; Como, G.; Franco, V.; Garibotto, G.; Zubani, R.; Cancarini, G.C. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am. J. Kidney Dis. 2007, 49, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Mitch, W.E. Low-protein diets in chronic kidney disease: Are we finally reaching a consensus? Nephrol. Dial. Transplant. 2015, 30, 6–8. [Google Scholar] [CrossRef]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Farr, L.E.; Smadel, J.E. The Effect of Dietary Protein on the Course of Nephrotoxic Nephritis in Rats. J. Exp. Med. 1939, 70, 615–627. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Moore, L.W.; Tortorici, A.R.; Chou, J.A.; St-Jules, D.E.; Aoun, A.; Rojas-Bautista, V.; Tschida, A.K.; Rhee, C.M.; Shah, A.A.; et al. North American experience with Low protein diet for Non-dialysis-dependent chronic kidney disease. BMC Nephrol. 2016, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Klahr, S.; Levey, A.S.; Beck, G.J.; Caggiula, A.W.; Hunsicker, L.; Kusek, J.W.; Striker, G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 1994, 330, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: Reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Nakao, T.; Murai, S.; Okada, T.; Matsumoto, H. Diagnosis and Prevalence of Protein-Energy Wasting and Its Association with Mortality in Japanese Haemodialysis Patients. Nephrology 2017, 22, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Vidiri, M.F.; Marrone, G.; Moriconi, E.; Bocedi, A.; Capria, A.; Rovella, V.; Ricci, G.; De Lorenzo, A.; Di Daniele, N. Is low-protein diet a possible risk factor of malnutrition in chronic kidney disease patients? Cell Death Discov. 2016, 2, 16026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopple, J.D.; Greene, T.; Chumlea, W.C.; Hollinger, D.; Maroni, B.J.; Merrill, D.; Scherch, L.K.; Schulman, G.; Wang, S.R.; Zimmer, G.S. Relationship between nutritional status and the glomerular filtration rate: Results from the MDRD study. Kidney Int. 2000, 57, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Laville, M. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst. Rev. 2009, 3, CD001892. [Google Scholar] [CrossRef] [PubMed]
- Nezu, U.; Kamiyama, H.; Kondo, Y.; Sakuma, M.; Morimoto, T.; Ueda, S. Effect of low-protein diet on kidney function in diabetic nephropathy: Meta-analysis of randomised controlled trials. BMJ Open 2013, 3. [Google Scholar] [CrossRef]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 2164–2176. [Google Scholar] [CrossRef]
- Cirillo, M.; Lombardi, C.; Chiricone, D.; De Santo, N.G.; Zanchetti, A.; Bilancio, G. Protein intake and kidney function in the middle-age population: Contrast between cross-sectional and longitudinal data. Nephrol. Dial. Transplant. 2014, 29, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Herber-Gast, G.M.; Biesbroek, S.; Verschuren, W.M.; Stehouwer, C.D.; Gansevoort, R.T.; Bakker, S.J.; Spijkerman, A.M. Association of dietary protein and dairy intakes and change in renal function: Results from the population-based longitudinal Doetinchem cohort study. Am. J. Clin. Nutr. 2016, 104, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; Aragaki, A.K.; LaCroix, A.Z.; Neuhouser, M.L.; Tinker, L.F.; Cauley, J.A.; Ensrud, K.E.; Jackson, R.D.; Prentice, R.L. Higher biomarker-calibrated protein intake is not associated with impaired renal function in postmenopausal women. J. Nutr. 2011, 141, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Lipworth, L.; Cavanaugh, K.L.; Young, B.A.; Tucker, K.L.; Carithers, T.C.; Taylor, H.A.; Correa, A.; Kabagambe, E.K.; Ikizler, T.A. Protein Intake and Long-term Change in Glomerular Filtration Rate in the Jackson Heart Study. J. Ren. Nutr. 2018, 28, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.; Yuan, W.L.; Haymann, J.P.; Flamant, M.; Houillier, P.; Thervet, E.; Boffa, J.J.; Vrtovsnik, F.; Froissart, M.; Banki, L.; et al. Association of a Low-Protein Diet With Slower Progression of CKD. Kidney Int. Rep. 2018, 3, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.H.; Park, S.K.; Park, H.C.; Chin, H.J.; Chae, D.W.; Choi, K.H.; Han, S.H.; Yoo, T.H.; Lee, K.; Kim, Y.S.; et al. KNOW-CKD (KoreaN cohort study for Outcome in patients With Chronic Kidney Disease): Design and methods. BMC Nephrol. 2014, 15, 1471–2369. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- John, K.A.; Cogswell, M.E.; Campbell, N.R.; Nowson, C.A.; Legetic, B.; Hennis, A.J.; Patel, S.M. Accuracy and Usefulness of Select Methods for Assessing Complete Collection of 24-Hour Urine: A Systematic Review. J. Clin. Hypertens. 2016, 18, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Okamura, T.; Miura, K.; Kadowaki, T.; Ueshima, H.; Nakagawa, H.; Hashimoto, T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J. Hum. Hypertens. 2002, 16, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prospective Studies Collaboration; Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Gallagher, D.; Nelson, M.E.; Matthews, D.E.; Heymsfield, S.B. Total-body skeletal muscle mass: Evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am. J. Clin. Nutr. 1996, 63, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. A Low-Protein Diet for Diabetic Kidney Disease: Its Effect and Molecular Mechanism, an Approach from Animal Studies. Nutrients 2018, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Vigotti, F.N.; Leone, F.; Capizzi, I.; Daidola, G.; Cabiddu, G.; Avagnina, P. Low-protein diets in CKD: How can we achieve them? A narrative, pragmatic review. Clin. Kidney J. 2015, 8, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Cialkowska-Rysz, A.; Gluba-Brzozka, A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Ventrella, F.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Grassi, G.; Loi, V.; Cabiddu, G.; Avagnina, P.; Versino, E. Low-Protein Diets in Diabetic Chronic Kidney Disease (CKD) Patients: Are They Feasible and Worth the Effort? Nutrients 2016, 8, 649. [Google Scholar] [CrossRef]
- Di Iorio, B.R.; Di Micco, L.; Marzocco, S.; De Simone, E.; De Blasio, A.; Sirico, M.L.; Nardone, L.; UBI Study Group. Very Low-Protein Diet (VLPD) Reduces Metabolic Acidosis in Subjects with Chronic Kidney Disease: The “Nutritional Light Signal” of the Renal Acid Load. Nutrients 2017, 9, 69. [Google Scholar] [CrossRef]
- Cirillo, M.; Zingone, F.; Lombardi, C.; Cavallo, P.; Zanchetti, A.; Bilancio, G. Population-based dose-response curve of glomerular filtration rate to dietary protein intake. Nephrol. Dial. Transplant. 2015, 30, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Dam, M.; Neelemaat, F.; Struijk-Wielinga, T.; Weijs, P.J.; van Jaarsveld, B.C. Physical performance and protein-energy wasting in patients treated with nocturnal haemodialysis compared to conventional haemodialysis: Protocol of the DiapriFIT study. BMC Nephrol. 2017, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.Y.; Lee, K.B.; Oh, K.H.; Ahn, C.; Park, S.K.; Chae, D.W.; Yoo, T.H.; Cho, K.H.; Kim, Y.S.; Hwang, Y.H.; et al. Serum adiponectin and protein-energy wasting in predialysis chronic kidney disease. Nutrition 2017, 33, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.W.; Byham-Gray, L.D.; Scott Parrott, J.; Rigassio-Radler, D.; Mandayam, S.; Jones, S.L.; Mitch, W.E.; Osama Gaber, A. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 2013, 83, 724–732. [Google Scholar] [CrossRef] [PubMed]
Tertile of DPI | p-trend | |||
---|---|---|---|---|
1T (n = 533) | 2T (n = 512) | 3T (n = 527) | ||
Age (years) | 54.1 ± 12.0 | 54.0 ± 12.1 | 54.7 ± 12.0 | 0.35 |
Male sex (%) | 58.9 | 61.3 | 69.1 *,† | 0.001 |
Current smoking (%) | 15.6 | 16.8 | 14.1 | 0.50 |
Alcohol drinking (%) | 39.9 | 43.7 | 53.7 *,† | <0.001 |
Hypertension (%) | 94.9 | 94.9 | 95.6 | 0.60 |
Diabetes (%) | 24.7 | 23.7 | 25.5 | 0.78 |
Cause of CKD | ||||
DMN (%) | 25.0 | 23.0 | 21.1 | 0.14 |
HN (%) | 18.6 | 21.9 | 21.9 | 0.19 |
GN (%) | 34.1 | 32.4 | 32.1 | 0.48 |
Others (%) | 22.3 | 22.7 | 24.9 | 0.32 |
BUN (mmol/L) | 9.9 ± 5.9 | 9.9 ± 5.3 | 9.5 ± 4.9 | 0.19 |
Cr (μmol/L) | 175.5 ± 109.7 | 154.2 ± 86.3 * | 132.9 ± 67.4 *,† | <0.001 |
eGFR (ml/min/1.73 m2) | 49.2 ± 30.9 | 53.9 ± 30.5 * | 60.8 ± 29.3 *,† | <0.001 |
UPCR (g/g Cr) | 0.54 (0.17–1.63) | 0.45 (0.12–1.40) * | 0.40 (0.12–1.03) * | 0.001 |
Advanced CKD (%) | 55.3 | 47.7 * | 36.6 *,† | <0.001 |
DPI (g/kg/day) | 0.78 ± 0.12 | 1.04 ± 0.07 * | 1.48 ± 0.41 *,† | <0.001 |
Bilirubin (μmol/L) | 11.1 ± 4.8 | 11.9 ± 5.1 * | 12.3 ± 5.3 * | <0.001 |
BMI (kg/m2) | 23.4 ± 3.2 | 24.6 ± 3.2 * | 25.4 ± 3.1 *,† | <0.001 |
FPG (mmol/L) | 5.9 ± 1.8 | 6.1 ± 2.2 | 6.1 ± 1.9 | 0.17 |
Serum albumin (g/L) | 41.6 ± 4.5 | 42.3 ± 3.8 * | 42.5 ± 3.7 * | <0.001 |
Cholesterol (mmol/L) | 4.4 ± 1.1 | 4.5 ± 1.0 | 4.5 ± 0.9 | 0.27 |
Estimated SMM (kg) | 24.8 ± 5.6 | 28.0 ± 6.2 * | 32.0 ± 7.8 *,† | <0.001 |
Hemoglobin (g/dL) | 12.4 ± 2.0 | 13.0 ± 2.0 * | 13.5 ± 1.9 *,† | <0.001 |
hsCRP (nmol/L) | 5.7 (1.9–16.2) | 5.3 (1.9–14.1) | 6.7 (2.4–16.2) | 0.39 |
Univariate | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
DPI tertile | ||||||
Second tertile vs. first tertile | 0.626 (0.482–0.814) | <0.001 | 0.765 (0.576–1.016) | 0.07 | 0.810 (0.600–1.094) | 0.17 |
Third tertile vs. first tertile | 0.412 (0.306–0.556) | <0.001 | 0.685 (0.495–0.948) | 0.02 | 0.737 (0.516–1.054) | 0.10 |
BMI (kg/m2) | - | - | - | - | 1.013 (0.966–1.062) | 0.59 |
Estimated SMM (kg) | - | - | - | - | 0.989 (0.961–1.019) | 0.48 |
Cholesterol < 3.8 mmol/L (yes vs. no) | - | - | - | - | 1.030 (0.777–1.364) | 0.84 |
Serum albumin < 40.0 g/L (yes vs. no) | - | - | - | - | 1.438 (1.051–1.969) | 0.02 |
Model 3 | Model 4 | Model 5 | Model 6 | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
DPI tertile (vs. first tertile) | ||||||||
Second tertile | 0.812 (0.603–1.092) | 0.17 | 0.763 (0.572–1.018) | 0.07 | 0.792 (0.591–1.063) | 0.12 | 0.828 (0.620–1.105) | 0.20 |
Third tertile | 0.714 (0.511–0.998) | 0.05 | 0.684 (0.491–0.952) | 0.02 | 0.705 (0.506–0.983) | 0.04 | 0.725 (0.523–1.006) | 0.05 |
No. of PEW components (vs. 0) | ||||||||
1 | 1.029 (0.745–1.420) | 0.86 | - | - | - | - | - | - |
2 | 0.913 (0.619–1.346) | 0.64 | - | - | - | - | - | - |
≥3 | 1.800 (1.181–2.742) | 0.01 | - | - | - | - | - | - |
PEW components ≥1 (yes vs. no) | - | - | 1.077 (0.799–1.452) | 0.63 | - | - | - | - |
PEW components ≥2 (yes vs. no) | - | - | - | - | 1.131 (0.860–1.487) | 0.38 | - | - |
PEW (yes vs. no) | - | - | - | - | - | - | 1.835 (1.297–2.596) | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.W.; Kim, Y.-S.; Kim, Y.H.; Chung, W.; Park, S.K.; Choi, K.H.; Ahn, C.; Oh, K.-H. Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study. Nutrients 2019, 11, 121. https://doi.org/10.3390/nu11010121
Lee SW, Kim Y-S, Kim YH, Chung W, Park SK, Choi KH, Ahn C, Oh K-H. Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study. Nutrients. 2019; 11(1):121. https://doi.org/10.3390/nu11010121
Chicago/Turabian StyleLee, Sung Woo, Yong-Soo Kim, Yeong Hoon Kim, Wookyung Chung, Sue K. Park, Kyu Hun Choi, Curie Ahn, and Kook-Hwan Oh. 2019. "Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study" Nutrients 11, no. 1: 121. https://doi.org/10.3390/nu11010121
APA StyleLee, S. W., Kim, Y.-S., Kim, Y. H., Chung, W., Park, S. K., Choi, K. H., Ahn, C., & Oh, K.-H. (2019). Dietary Protein Intake, Protein Energy Wasting, and the Progression of Chronic Kidney Disease: Analysis from the KNOW-CKD Study. Nutrients, 11(1), 121. https://doi.org/10.3390/nu11010121