Next Article in Journal
Association of Sensory Liking for Fat with Dietary Intake and Metabolic Syndrome in Korean Adults
Next Article in Special Issue
Development of Vitamin D Toxicity from Overcorrection of Vitamin D Deficiency: A Review of Case Reports
Previous Article in Journal
Psychiatric Comorbidity in Children and Adults with Gluten-Related Disorders: A Narrative Review
Previous Article in Special Issue
Associations of Maternal Vitamin D Deficiency with Pregnancy and Neonatal Complications in Developing Countries: A Systematic Review
Open AccessArticle

Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed

1
School of Public Health, Curtin University, Bentley WA 6102, Australia
2
National Measurement Institute, 1/153 Bertie Street, Port Melbourne VIC 3207, Australia
3
National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra ACT 2600, Australia
4
Centre for Ophthalmology and Visual Science, University of Western Australia, Perth WA 6009, Australia
5
School of Veterinary and Life Sciences, Murdoch University, Murdoch WA 6150, Australia
*
Author to whom correspondence should be addressed.
Nutrients 2018, 10(7), 876; https://doi.org/10.3390/nu10070876
Received: 24 May 2018 / Revised: 25 June 2018 / Accepted: 3 July 2018 / Published: 6 July 2018
(This article belongs to the Special Issue Changing Times for Vitamin D and Health)
Vitamin D has previously been quantified in some plants and algae, particularly in leaves of the Solanaceae family. We measured the vitamin D content of Australian native food plants and Australian-grown edible seaweed. Using liquid chromatography with triple quadrupole mass spectrometry, 13 samples (including leaf, fruit, and seed) were analyzed in duplicate for vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3. Five samples contained vitamin D2: raw wattleseed (Acacia victoriae) (0.03 µg/100 g dry weight (DW)); fresh and dried lemon myrtle (Backhousia citriodora) leaves (0.03 and 0.24 µg/100 g DW, respectively); and dried leaves and berries of Tasmanian mountain pepper (Tasmannia lanceolata) (0.67 and 0.05 µg/100 g DW, respectively). Fresh kombu (Lessonia corrugata) contained vitamin D3 (0.01 µg/100 g DW). Detected amounts were low; however, it is possible that exposure to ultraviolet radiation may increase the vitamin D content of plants and algae if vitamin D precursors are present. View Full-Text
Keywords: liquid chromatography with triple quadrupole mass spectrometry (LC-QQQ); liquid chromatography; triple quadrupole; vitamin D; serum 25-hydroxyvitamin D (25(OH)D); plants; algae liquid chromatography with triple quadrupole mass spectrometry (LC-QQQ); liquid chromatography; triple quadrupole; vitamin D; serum 25-hydroxyvitamin D (25(OH)D); plants; algae
MDPI and ACS Style

Hughes, L.J.; Black, L.J.; Sherriff, J.L.; Dunlop, E.; Strobel, N.; Lucas, R.M.; Bornman, J.F. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients 2018, 10, 876. https://doi.org/10.3390/nu10070876

AMA Style

Hughes LJ, Black LJ, Sherriff JL, Dunlop E, Strobel N, Lucas RM, Bornman JF. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients. 2018; 10(7):876. https://doi.org/10.3390/nu10070876

Chicago/Turabian Style

Hughes, Laura J.; Black, Lucinda J.; Sherriff, Jill L.; Dunlop, Eleanor; Strobel, Norbert; Lucas, Robyn M.; Bornman, Janet F. 2018. "Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed" Nutrients 10, no. 7: 876. https://doi.org/10.3390/nu10070876

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop