Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Acquisition
2.2. Sample Preparation
2.3. Sample Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Australian Bureau of Statistics. Australian Health Survey: Biomedical Results for Nutrients, 2011–2012; ABS: Canberra, Australia, 2014. [Google Scholar]
- Nowson, C.A.; Mason, R.S. Vitamin D and health in adults in Australia and New Zealand. Med. J. Aust. 2013, 199, 394. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Truswell, A.S. Essentials of Human Nutrition, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Liu, J. Vitamin D content of food and its contribution to vitamin D status: A brief overview and Australian focus. Photochem. Photobiol. Sci. 2012, 11, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Urbain, P.; Valverde, J.; Jakobsen, J. Impact on vitamin D2, vitamin D4 and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Foods Hum. Nutr. 2016, 71, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Keegan, R.J.H.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-Endocrinol. 2013, 5, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Boland, R.; Skliar, M.; Curino, A.; Milanesi, L. Vitamin D compounds in plants. Plant Sci. 2003, 164, 357–369. [Google Scholar] [CrossRef]
- Dunlop, E.; Cunningham, J.; Sherriff, J.L.; Lucas, R.M.; Greenfield, H.; Arcot, J.; Strobel, N.; Black, L.J. Vitamin D(3) and 25-hydroxyvitamin D(3) content of retail white fish and eggs in Australia. Nutrients 2017, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Greenfield, H.; Strobel, N.; Fraser, D.R. The influence of latitude on the concentration of vitamin D3 and 25-hydroxy-vitamin D3 in Australian red meat. Food Chem. 2013, 140, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Greenfield, H.; Fraser, D.R. An exploratory study of the content of vitamin D compounds in selected samples of Australian eggs. Nutr. Diet 2014, 71, 46–50. [Google Scholar] [CrossRef]
- Cashman, K.; Seamans, K.; Lucey, A.; Stöcklin, E.; Weber, P.; Kiely, M.; Hill, T. Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am. J. Clin. Nutr. 2012, 95, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: A vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 2003, 47, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Hirche, F.; Stangl, G.I.; Hinz, K.; Westphal, S.; Dierkes, J. Bioavailability of vitamin D(2) and D(3) in healthy volunteers, a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 4339–4345. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarnio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: An 8-week randomised-controlled trial in young adult Finnish women. Br. J. Nutr. 2016, 115, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A. Nutritional rickets around the world. J. Steroid Biochem. Mol. Biol. 2013, 136, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Uday, S.; Hogler, W. Nutritional rickets and osteomalacia in the twenty-first century: Revised concepts, public health, and prevention strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Wintermeyer, E.; Ihle, C.; Ehnert, S.; Stockle, U.; Ochs, G.; de Zwart, P.; Flesch, I.; Bahrs, C.; Nussler, A.K. Crucial role of vitamin D in the musculoskeletal system. Nutrients 2016, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Norval, M.; Neale, R.E.; Young, A.R.; de Gruijl, F.R.; Takizawa, Y.; van der Leun, J.C. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci. 2015, 14, 53–87. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; McKenzie, R.L.; et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2017. Photochem. Photobiol. Sci. 2018, 17, 127–179. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.F.; Weinstock, M. Antirachitic properties imparted to inert fluids and to green vegetables by ultra-violet irradiation. J. Biol. Chem. 1924, 62, 301–313. [Google Scholar]
- Bechtel, H.E.; Huffman, C.F.; Ducan, C.W.; Hoppert, C.A. Vitamin D studies in cattle: IV. Corn silage as a source of vitamin D for dairy cattle. J. Dairy Sci. 1936, 19, 359–372. [Google Scholar] [CrossRef]
- Wasserman, R.H.; Corradino, R.A.; Krook, L.; Hughes, M.R.; Haussler, M.R. Studies on the 1α, 25-dihydroxycholecalciferol-like activity in a calcinogenic plant, Cestrum diurnum, in the chick. J. Nutr. 1976, 106, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Aburjai, T.; Bernasconi, S.; Manzocchi, L.; Pelizzoni, F. Isolation of 7-dehydrocholesterol from cell cultures of Solanum malacoxylon. Phytochemistry 1996, 43, 773–776. [Google Scholar] [CrossRef]
- Aburjai, T.; Al-Khalil, S.; Abuirjeie, M. Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry 1998, 49, 2497–2499. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.). Food Chem. 2013, 138, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Prema, T.P.; Raghuramulu, N. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 1996, 42, 617–620. [Google Scholar] [CrossRef]
- Prema, T.P.; Raghuramulu, N. Free vitamin D3 metabolites in Cestrum diurnum leaves. Phytochemistry 1994, 37, 677–681. [Google Scholar] [CrossRef]
- Horst, R.L.; Reinhardt, T.A.; Russell, J.R.; Napoli, J.L. The isolation and identification of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant). Arch. Biochem. Biophys. 1984, 231, 67–71. [Google Scholar] [CrossRef]
- von Hurst, P.R.; Moorhouse, R.J.; Raubenheimer, D. Preferred natural food of breeding kakapo is a high value source of calcium and vitamin D. J. Steroid Biochem. Mol. Biol. 2016, 164, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Toshio, O.; Makoto, T.; Tadashi, K. Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comp. Biochem. Physiol. A 1991, 100, 483–487. [Google Scholar]
- Sunita Rao, D.; Raghuramulu, N. Food chain as origin of vitamin D in fish. Comp. Biochem. Physiol. A 1996, 114, 15–19. [Google Scholar] [CrossRef]
- de Roeck-Holtzhauer, Y.; Quere, I.; Claire, C. Vitamin analysis of five planktonic microalgae and one macroalga. J. App. Phycol. 1991, 3, 259–264. [Google Scholar] [CrossRef]
- Clarke, M. Australian Native Food Industry Stocktake; Rural Industries Research Development Corporation in Association with ANFIL: Canberra, Australia, 2012. [Google Scholar]
- Black, L.J.; Lucas, R.M.; Sherriff, J.L.; Björn, L.O.; Bornman, J.F. In pursuit of vitamin D in plants. Nutrients 2017, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P.; Roulfe, P.; Pavan, A. Health Benefits of Australian Native Foods–An Evaluation of Health-Enhancing Compounds; Rural Industries Research and Development Corporation: Canberra, Australia, 2009. [Google Scholar]
- US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy. 2018. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference/ (accessed on 1 June 2018).
- Mabeau, S.; Fleurence, J. Seaweed in food-products - biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Sanderson, J.C.; Di Benedetto, R. Tasmanian Seaweeds for the Edible Market; Marine Laboratory: Taroona, Tasmania, Australia, 1988. [Google Scholar]
- Sanderson, J. A preliminary survey of the distribution of the introduced macroalga, Undaria pinnatifida (Harvey) Suringer on the east coast of Tasmania, Australia. Bot. Mar. 1990, 33, 153–158. [Google Scholar] [CrossRef]
- Adamec, J.; Jannasch, A.; Huang, J.; Hohman, E.; Fleet, J.C.; Peacock, M.; Ferruzzi, M.G.; Martin, B.; Weaver, C.M. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J. Sep. Sci. 2011, 34, 11–20. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Cholecalciferol (vitamin D3) in selected foods. In Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Atlanta, GA, USA, 2016. [Google Scholar]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Jäpelt, R.B.; Didion, T.; Smedsgaard, J.; Jakobsen, J. Seasonal variation of provitamin D2 and vitamin D2 in perennial ryegrass (Lolium perenne L.). J. Agric. Food Chem. 2011, 59, 10907–10912. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Carvalho, D.; Guido, L.; Barros, A. Detection and quantification of provitamin D2 and vitamin D2 in hop (Humulus lupulus L.) by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2007, 55, 7995–8002. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.C.; Brandsch, C.; König, B.; Hirche, F.; Stangl, G.I. Plant oils as potential sources of vitamin D. Front. Nutr. 2016, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Curino, A.; Milanesi, L.; Benassati, S.; Skliar, M.; Boland, R. Effect of culture conditions on the synthesis of vitamin D(3) metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry 2001, 58, 81. [Google Scholar] [CrossRef]
- Darby, H.H.; Clarke, H.T. The plant origin of a vitamin D. Science 1937, 85, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. LC–MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants. Food Chem. 2011, 129, 217–225. [Google Scholar] [CrossRef]
- Schreiber, A. Advantages of using triple quadrupole over single quadrupole mass spectrometry to quantify and identify the presence of pesticides in water and soil samples. Sciex Concord Ontarion 2010, 1, 1–6. [Google Scholar]
Common Name (Botanical Name) | Plant part | Vitamin D2 (µg/100 g) | Vitamin D3 (µg/100 g) | 25(OH)D3 (µg/100 g) |
---|---|---|---|---|
Plants | ||||
Tomato | Leaf | Not tested | 78 (DW) a | 2 (DW) a |
(Lycopersicon esculentum) | Leaf | Not tested | 110 (FW) b | 1.5 (FW) b |
Leaf | Not tested | 0.17 (DW) c | n/d c | |
Waxy leaf nightshade | Leaf | Not tested | 0.32 (DW) c | 0.08 (DW) c |
(Solanum glaucophyllum) | Cell culture derived from leaf material | Not tested | 220.00 (FW) d | 100.00 (FW) d |
Potato | Leaf | Not tested | 15 (FW) b | n/d b |
(Solanum tuberosum) | ||||
Bell pepper | Leaf | Not tested | n/d c | n/d c |
(Capsicum annuum) | ||||
Day blooming jasmine | Leaf | Not tested | 10 (DW) e | 10 (DW) e |
(Cestrum diurnum) | ||||
Zucchini | Leaf | Not tested | 23 (FW) b | Not tested |
(Cucurbita pepo) | ||||
Alfalfa/Lucerne | Leaf | 4.8 DW) f | 0.06 (DW) f | Not tested |
(Medicago sativa) | ||||
Rimu (Dacrydium cupressinum) | Fruit | 70 (DW) g | 11.5 (DW) g | Not tested |
Algae | ||||
Microalgae | ||||
Phytoplankton | Whole algae | 1.9–4.3 (DW) h | 2.2–14.7 (DW) h | Not tested |
5.3 (DW) i | 80.4 (DW) i | Not tested | ||
72.4 (DW) i | 271.7 (DW) i | Not tested | ||
(Pavlova lutheri) | Whole algae | 3900 (DW) j | Not tested | Not tested |
(Tetraselmis suecica) | Whole algae | 1400 (DW) j | Not tested | Not tested |
Marine centric diatom (Skeletonema costatum) | Whole algae | 1100 (DW) j | Not tested | Not tested |
(Isochrysis galbana) | Whole algae | 500 (DW) j | Not tested | Not tested |
(Chaetoceros calcitrans) | Whole algae | n/d j | Not tested | Not tested |
Macroalgae | ||||
Japanese Wireweed (Sargassum muticum) | Not specified | 90 (DW) j | Not tested | Not tested |
Common name (Botanical name) | Food Type | Part Tested | Vitamin D2 (µg/100 g) | Vitamin D3 (µg/100g) | 25(OH)D D2 (µg/100 g) | 25(OH)D D3 (µg/100 g) |
---|---|---|---|---|---|---|
Wattleseed | Plant | Leaf | <0.05 | <0.05 | <0.05 | <0.05 |
(Acacia victoriae) | Raw seed | 0.03 * | <0.05 | <0.05 | <0.05 | |
Roasted, milled seed | <0.05 | <0.05 | <0.05 | <0.05 | ||
Tasmanian mountain pepper | Plant | Fresh leaf | <0.05 | <0.05 | <0.05 | <0.05 |
(Tasmannia lanceolata) | Dried leaf | 0.67 | <0.05 | <0.05 | <0.05 | |
Fresh berries | <0.05 | <0.05 | <0.05 | <0.05 | ||
Dried berries | 0.05 | <0.05 | <0.05 | <0.05 | ||
Lemon myrtle | Plant | Fresh leaf | 0.03* | <0.05 | <0.05 | <0.05 |
(Backhousia citriodora) | Dried Leaf | 0.24 | <0.05 | <0.05 | <0.05 | |
Wakame | Algae | Fresh upper leaf and central stem | <0.05 | <0.05 | <0.05 | <0.05 |
(Undaria pinnatifida) | Dried upper leaf and central stem | <0.05 | <0.05 | <0.05 | <0.05 | |
Kombu | Algae | Fresh leaf | <0.05 | 0.01* | <0.05 | <0.05 |
(Lessonia corrugata) | Dried leaf | <0.05 | <0.05 | <0.05 | <0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, L.J.; Black, L.J.; Sherriff, J.L.; Dunlop, E.; Strobel, N.; Lucas, R.M.; Bornman, J.F. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients 2018, 10, 876. https://doi.org/10.3390/nu10070876
Hughes LJ, Black LJ, Sherriff JL, Dunlop E, Strobel N, Lucas RM, Bornman JF. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients. 2018; 10(7):876. https://doi.org/10.3390/nu10070876
Chicago/Turabian StyleHughes, Laura J., Lucinda J. Black, Jill L. Sherriff, Eleanor Dunlop, Norbert Strobel, Robyn M. Lucas, and Janet F. Bornman. 2018. "Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed" Nutrients 10, no. 7: 876. https://doi.org/10.3390/nu10070876
APA StyleHughes, L. J., Black, L. J., Sherriff, J. L., Dunlop, E., Strobel, N., Lucas, R. M., & Bornman, J. F. (2018). Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients, 10(7), 876. https://doi.org/10.3390/nu10070876