Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design, Treatments, and Subjects
2.2. Sample Collection and Analysis
2.3. Statistics
3. Results
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
References
- Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–109. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2013, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, J.L.; Musaad, S.M.; Holscher, H.D. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am. J. Clin. Nutr. 2017, 106, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Caporaso, J.G.; Hooda, S.; Brulc, J.M.; Fahey, G.C.J.; Swanson, K.S.; Fahey, G.C., Jr.; Swanson, K.S. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: Follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Bauer, L.L.; Vishnupriya, G.; Pelkman, C.L.; Fahey, G.C.; Swanson, K.S.; Gourineni, V.; Pelkman, C.L.; Fahey, G.C., Jr.; Swanson, K.S. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J. Nutr. 2015, 145, 2025–2032. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.G.; Martínez, I.; Walter, J.; Goin, C.; Hutkins, R.W. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 2011, 6, e25200. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Kim, J.; Duffy, P.R.; Schlegel, V.L.; Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 2010, 5, e15046. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Devillard, E.; McIntosh, F.M.; Paillard, D.; Thomas, N.A.; Shingfield, K.J.; Wallace, R.J. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology 2009, 155, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, L.; Raes, K.; Weckx, S.; Dannenberger, D.; Leroy, F.; De Vuyst, L.; De Smet, S. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl. Microbiol. Biotechnol. 2010, 87, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Devillard, E.; McIntosh, F.M.; Duncan, S.H.; Wallace, R.J. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 2007, 189, 2566–2570. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012, 487, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hu, F.B.; Ros, E.; Sabaté, J. The role of tree nuts and peanuts in the prevention of coronary heart disease: Multiple potential mechanisms. J. Nutr. 2008, 138, 1746S–1751S. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Sabaté, J. Nuts, body weight and insulin resistance. Br. J. Nutr. 2006, 96 (Suppl. S2), S79–S86. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Novotny, J.A.; Bornhorst, G.M.; Baer, D.J. Food processing and structure impact the metabolizable energy of almonds. Food Funct. 2016, 7, 4231–4238. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Nueno-Palop, C.; Bisignano, G.; Wickham, M.S.J.; Narbad, A. Potential prebiotic properties of almond (Amygdalus communis L.) seeds. Appl. Environ. Microbiol. 2008, 74, 4264–4270. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermudez-Humaran, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-W.; Cephas, K.D.; Holscher, H.D.; Kerr, K.R.; Mangian, H.F.; Tappenden, K.A.; Swanson, K.S. Nondigestible Fructans Alter Gastrointestinal Barrier Function, Gene Expression, Histomorphology, and the Microbiota Profiles of Diet-Induced Obese C57BL/6J Mice 1–3. J. Nutr. 2016, 146, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Venable, E.B.; Fenton, K.A.; Braner, V.M.; Reddington, C.E.; Halpin, M.J.; Heitz, S.A.; Francis, J.M.; Gulson, N.A.; Goyer, C.L.; Bland, S.D.; et al. Effects of Feeding Management on the Equine Cecal Microbiota. J. Equine Vet. Sci. 2017, 49, 113–121. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nature 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.M.L.; Grassby, T.; Mandalari, G.; Waldron, K.W.; Butterworth, P.J.; Berry, S.E.E.; Ellis, P.R. Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. Am. J. Clin. Nutr. 2015, 101, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Guetterman, H.M.; Swanson, K.S.; An, R.; Matthan, N.R.; Lichtenstein, A.H.; Novotny, J.A.; Baer, D.J. Walnut consumption alters the gastrointestinal microbiota, microbial-derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial. J. Nutr. 2018. [Google Scholar] [CrossRef]
- Nakanishi, M.; Chen, Y.; Qendro, V.; Miyamoto, S.; Weinstock, E.; Weinstock, G.M.; Rosenberg, D.W. Effects of walnut consumption on colon carcinogenesis and microbial community structure. Cancer Prev. Res. 2016, 9, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Byerley, L.O.; Samuelson, D.; Blanchard, E.; Luo, M.; Lorenzen, B.N.; Banks, S.; Ponder, M.A.; Welsh, D.A.; Taylor, C.M. Changes in the Gut Microbial Communities Following Addition of Walnuts to the Diet. J. Nutr. Biochem. 2017, 48, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Hold, G.L.; Barcenilla, A.; Stewart, C.S.; Flint, H.J. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 2002, 52, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Hold, G.L.; Harmsen, H.J.; Stewart, C.S.; Flint, H.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2141–2146. [Google Scholar] [PubMed]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 2012, 3, 1245. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpää, P.E.; Salminen, S.J.; Isolauri, E.; Lee, Y.K. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett. 2001, 194, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut Microbiota and Extreme Longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yu, T.; Huang, G.; Cai, D.; Liang, X.; Su, H.; Zhu, Z.; Li, D.; Yang, Y.; Shen, P.; et al. Gut Microbiota community and its assembly associated with age and diet in Chinese centenarians. J. Microbiol. Biotechnol. 2015, 25, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Values 1 | Range |
---|---|---|
Age, year | 56.7 ± 10.2 | 32.7–72.4 |
BMI, kg/m2 | 29.7 ± 4.4 | 21.9–36.1 |
LDL cholesterol, mg/dL | 121 ± 22.3 | 82.5–153 |
HDL cholesterol, mg/dL | 57.9 ± 16.9 | 33.3–85.5 |
Triglycerides, mg/dL | 102 ± 37.2 | 52.4–200 |
Glucose, mg/dL | 94.8 ± 8.0 | 81.9–108 |
Almond Consumption, % of Bacterial Sequences 1 | |||
---|---|---|---|
Control (0 g/Day) | Almond (42 g/Day) | p-Value | |
Phyla and Genera | |||
Firmicutes | 63.9 ± 1.99 | 65.6 ± 1.51 | 0.29 |
Faecalibacterium | 4.39 ± 0.68 | 4.61 ± 0.64 | 0.47 |
Coprococcus | 4.54 ± 0.54 | 4.70 ± 0.47 | 0.65 |
Ruminococcus | 4.65 ± 0.70 | 4.16 ± 0.59 | 0.32 |
Blautia | 2.09 ± 0.33 | 2.25 ± 0.30 | 0.41 |
Dorea | 1.61 ± 0.28 | 1.69 ± 0.26 | 0.61 |
Phascolarctobacterium 2 | 0.23 ± 0.29 | 0.21 ± 0.28 | 0.67 |
Roseburia 2 | 0.47 ± 0.14 | 0.67 ± 0.13 | 0.03 |
Lachnospira 2 | 0.49 ± 0.15 | 0.71 ± 0.14 | 0.01 |
Dialister | 0.42 ± 0.31 | 0.72 ± 0.29 | 0.05 |
Clostridium 2 | 0.42 ± 0.08 | 0.53 ± 0.07 | 0.04 |
Streptococcus 2 | 0.17 ± 0.18 | 0.17 ± 0.16 | 0.95 |
Oscillospira | 0.54 ± 0.07 | 0.57 ± 0.06 | 0.56 |
Bacteroidetes | 25.7 ± 2.13 | 26.7 ± 1.65 | 0.57 |
Bacteroides | 19.2 ± 2.15 | 20.3 ± 1.87 | 0.41 |
Parabacteroides | 1.31 ± 0.23 | 0.99 ± 0.20 | 0.02 |
Prevotella 2 | 0.03 ± 0.31 | 0.03 ± 0.30 | 0.24 |
Actinobacteria | 5.45 ± 1.05 | 3.92 ± 0.91 | 0.03 |
Bifidobacterium | 3.68 ± 0.85 | 2.48 ± 0.76 | 0.03 |
Collinsella 2 | 0.14 ± 0.24 | 0.13 ± 0.23 | 0.87 |
Verrucomicrobia | 1.45 ± 0.34 | 1.10 ± 0.29 | 0.14 |
Akkermansia | 1.45 ± 0.34 | 1.10 ± 0.29 | 0.14 |
Proteobacteria | 2.34 ± 0.51 | 1.71 ± 0.39 | 0.15 |
n = 18 | n = 68 |
Almond Treatments, % of Sequences 1 | ||||||
---|---|---|---|---|---|---|
Control 0 g/Day | Almond Butter 42 g/Day | Chopped Almonds 42 g/Day | Whole Roasted 42 g/Day | Whole Raw 42 g/Day | p-Value | |
PhylaandGenera | ||||||
Firmicutes | 63.9 ± 1.99 | 64.2 ± 1.99 | 66.2 ± 2.13 | 66.2 ± 1.99 | 66.1 ± 2.03 | 0.68 |
Faecalibacterium | 4.39 ± 0.68 | 4.62 ± 0.68 | 4.48 ± 0.70 | 4.40 ± 0.68 | 4.94 ± 0.68 | 0.63 |
Coprococcus | 4.54 ± 0.54 | 4.60 ± 0.54 | 4.51 ± 0.56 | 5.06 ± 0.54 | 4.59 ± 0.54 | 0.73 |
Ruminococcus | 4.65 ± 0.70 | 4.73 ± 0.69 | 3.70 ± 0.73 | 4.22 ± 0.69 | 3.88 ± 0.70 | 0.39 |
Blautia | 2.09 ± 0.33 | 2.07 ± 0.33 | 2.36 ± 0.34 | 2.37 ± 0.33 | 2.24 ± 0.33 | 0.63 |
Dorea | 1.61 ± 0.28 | 1.71 ± 0.28 | 1.67 ± 0.29 | 1.77 ± 0.28 | 1.58 ± 0.29 | 0.87 |
Phascolarctobacterium 2 | 0.23 ± 0.29 | 0.24 ± 0.29 | 0.23 ± 0.29 | 0.20 ± 0.29 | 0.19 ± 0.29 | 0.70 |
Roseburia 2 | 0.47 ± 0.14 | 0.48 ± 0.14 | 0.83 ± 0.14 * | 0.73 ± 0.14 ^ | 0.73 ± 0.14 ^ | <0.01 |
Lachnospira 2 | 0.49 ± 0.15 | 0.54 ± 0.15 | 0.80 ± 0.15 * | 0.79 ± 0.15 * | 0.76 ± 0.15 ^ | 0.02 |
Dialister | 0.42 ± 0.31 | 0.44 ± 0.31 | 0.70 ± 0.32 | 0.74 ± 0.31 | 1.03 ± 0.31 * | 0.01 |
Clostridium 2 | 0.42 ± 0.08 | 0.52 ± 0.08 | 0.54 ± 0.09 | 0.58 ± 0.08 | 0.48 ± 0.08 | 0.24 |
Streptococcus 2 | 0.17 ± 0.18 | 0.23 ± 0.18 | 0.17 ± 0.18 | 0.18 ± 0.18 | 0.11 ± 0.18 | 0.09 |
Oscillospira | 0.54 ± 0.07 | 0.54 ± 0.07 | 0.75 ± 0.07 * | 0.53 ± 0.07 | 0.51 ± 0.07 | 0.02 |
Bacteroidetes | 25.7 ± 2.13 | 27.1 ± 2.14 | 26.5 ± 2.30 | 25.7 ± 2.14 | 27.6 ± 2.19 | 0.90 |
Bacteroides | 19.2 ± 2.15 | 20.8 ± 2.15 | 20.4 ± 2.26 | 19.6 ± 2.15 | 20.6 ± 2.18 | 0.88 |
Parabacteroides | 1.31 ± 0.23 | 1.07 ± 0.23 | 0.89 ± 0.23 | 1.03 ± 0.23 | 0.93 ± 0.23 | 0.13 |
Prevotella 2 | 0.03 ± 0.31 | 0.03 ± 0.31 | 0.04 ± 0.31 | 0.04 ± 0.31 | 0.03 ± 0.31 | 0.75 |
Actinobacteria | 5.45 ± 1.05 | 4.51 ± 1.06 | 3.77 ± 1.11 | 4.09 ± 1.06 | 3.20 ± 1.07 | 0.16 |
Bifidobacterium | 3.68 ± 0.85 | 2.68 ± 0.85 | 2.71 ± 0.89 | 2.53 ± 0.85 | 2.04 ± 0.86 | 0.19 |
Collinsella 2 | 0.14 ± 0.24 | 0.12 ± 0.24 | 0.12 ± 0.25 | 0.16 ± 0.24 | 0.13 ± 0.24 | 0.87 |
Verrucomicrobia | 1.45 ± 0.34 | 1.16 ± 0.34 | 1.10 ± 0.36 | 1.25 ± 0.34 | 0.87 ± 0.35 | 0.44 |
Akkermansia | 1.45 ± 0.34 | 1.16 ± 0.34 | 1.10 ± 0.36 | 1.25 ± 0.34 | 0.87 ± 0.35 | 0.44 |
Proteobacteria | 2.34 ± 0.51 | 1.93 ± 0.51 | 1.88 ± 0.55 | 1.75 ± 0.51 | 1.29 ± 0.52 | 0.45 |
n = 18 | n = 18 | n = 15 | n = 18 | n = 17 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holscher, H.D.; Taylor, A.M.; Swanson, K.S.; Novotny, J.A.; Baer, D.J. Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients 2018, 10, 126. https://doi.org/10.3390/nu10020126
Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ. Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients. 2018; 10(2):126. https://doi.org/10.3390/nu10020126
Chicago/Turabian StyleHolscher, Hannah D., Andrew M. Taylor, Kelly S. Swanson, Janet A. Novotny, and David J. Baer. 2018. "Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial" Nutrients 10, no. 2: 126. https://doi.org/10.3390/nu10020126
APA StyleHolscher, H. D., Taylor, A. M., Swanson, K. S., Novotny, J. A., & Baer, D. J. (2018). Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients, 10(2), 126. https://doi.org/10.3390/nu10020126