A Mini Review on Antidiabetic Properties of Fermented Foods
Abstract
:1. Introduction
2. Antidiabetic Properties of Fermented Foods
2.1. In Vitro Studies
2.2. In Vivo Studies in Animal Models
2.3. In Vivo Studies in Humans
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Savaiano, D.A. Lactose digestion from yogurt: Mechanism and relevance. Am. J. Clin. Nutr. 2014, 99 (Suppl. 5), 1251S–1255S. [Google Scholar] [CrossRef] [PubMed]
- Chilton, S.N.; Burton, J.P.; Reid, G. Inclusion of fermented foods in food guides around the world. Nutrients 2015, 7, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Crispie, F.; Kilcawley, K.; O’Sullivan, O.; O’Sullivan, M.G.; Claesson, M.J.; Cotter, P.D. Microbial succession and flavor production in the fermented dairy beverage Kefir. mSystems 2016, 1, e00052-16. [Google Scholar] [CrossRef] [PubMed]
- Borresen, E.C.; Henderson, A.J.; Kumar, A.; Weir, T.L.; Ryan, E.P. Fermented foods: Patented approaches and formulations for nutritional supplementation and health promotion. Recent Pat. Food Nutr. Agric. 2012, 4, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Lorea Baroja, M.; Kirjavainen, P.V.; Hekmat, S.; Reid, G. Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin. Exp. Immunol. 2007, 149, 470–479. [Google Scholar] [CrossRef] [Green Version]
- An, S.Y.; Lee, M.S.; Jeon, J.Y.; Ha, E.S.; Kim, T.H.; Yoon, J.Y.; Ok, C.O.; Lee, H.K.; Hwang, W.S.; Choe, S.J.; et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann. Nutr. Metab. 2013, 63, 111–119. [Google Scholar] [CrossRef]
- Iwasa, M.; Aoi, W.; Mune, K.; Yamauchi, H.; Furuta, K.; Sasaki, S.; Takeda, K.; Harada, K.; Wada, S.; Nakamura, Y.; et al. Fermented milk improves glucose metabolism in exercise-induced muscle damage in young healthy men. Nutr. J. 2013, 12, 83. [Google Scholar] [CrossRef]
- Tapsell, L.C. Fermented dairy food and CVD risk. Br. J. Nutr. 2015, 113 (Suppl. 2), S131–S135. [Google Scholar] [CrossRef]
- Hilimire, M.R.; DeVylder, J.E.; Forestell, C.A. Fermented foods, neuroticism, and social anxiety: An interaction model. Psychiatry Res. 2015, 228, 203–208. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Impact of fermented foods on human cognitive function—A review of outcome of clinical trials. Sci. Pharm. 2018, 86, 22. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A comprehensive review on functional properties of fermented rice bran. Pharmacogn. Rev. 2018, 12, 218–224. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Thai fermented foods as a versatile source of bioactive microorganisms—A comprehensive review. Sci. Pharm. 2018, 86, 37. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Chaiyasut, C.; Kesika, P. Cosmeceutical importance of fermented plant extracts: A short review. Int. J. Appl. Pharm. 2018, 10, 31–34. [Google Scholar] [CrossRef]
- Srihari, T.; Karthikesan, K.; Ashokkumar, N.; Satyanarayana, U. Anti-hyperglycaemic efficacy of kombucha in streptozotocin-induced rats. J. Funct. Foods 2013, 5, 1794–1802. [Google Scholar] [CrossRef]
- Zulkawi, N.; Ng, K.H.; Zamberi, N.R.; Yeap, S.K.; Satharasinghe, D.A.; Tan, S.W.; Ho, W.Y.; Abd Rashid, N.Y.; Md Lazim, M.I.; Jamaluddin, A.; et al. Antihyperglycemic and anti-inflammatory effects of fermented food paste in high-fat diet and streptozotocin-challenged mice. Drug Des. Dev. Ther. 2018, 12, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Kwon, J.I.; Apostolidis, E.; Shetty, E. Anti-diabetes functionality of kefir culture-mediated fermented soymilk supplemented with Rhodiola extracts. Food Biotechnology 2006, 20, 13–29. [Google Scholar] [CrossRef]
- Lim, S.I.; Lee, B.Y. Anti-diabetic effect of material fermented using rice bran and soybean as the main ingredient by Bacillus sp. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 222–229. [Google Scholar] [CrossRef]
- Choi, J.S.; Seo, H.J.; Lee, Y.R.; Kwon, S.J.; Moon, S.H.; Park, S.M.; Sohn, J.H. Characteristics and in vitro anti-diabetic properties of the Korean rice wine, makgeolli fermented with Laminaria japonica. Prev. Nutr. Food Sci. 2014, 19, 98–107. [Google Scholar] [CrossRef]
- Raffaelli, F.; Nanetti, L.; Montecchiani, G.; Borroni, F.; Salvolini, E.; Faloia, E.; Ferretti, G.; Mazzanti, L.; Vignini, A. In vitro effects of fermented papaya (Carica papaya L.) on platelets obtained from patients with type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Fujita, A.; Sarkar, D.; Genovese, M.I.; Shetty, K. Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochem. 2017, 59, 133–140. [Google Scholar] [CrossRef]
- Jeon, B.S.; Park, J.W.; Kim, B.K.; Kim, H.K.; Jung, T.S.; Hahm, J.R.; Kim, D.R.; Cho, Y.S.; Cha, J.Y. Fermented mushroom milk-supplemented dietary fibre prevents the onset of obesity and hypertriglyceridemia in Otsuka Long-Evans Tokushima fatty rats. Diabetes Obes. Metab. 2005, 7, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.C.; Hsu, T.H.; Tu, S.T.; Lin, K.C. Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am. J. Chin. Med. 2006, 34, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Minamiyama, Y.; Takemura, S.; Tsukioka, T.; Shinkawa, H.; Kobayashi, F.; Nishikawa, Y.; Kodai, S.; Mizuguchi, S.; Suehiro, S.; Okada, S. Effect of AOB, a fermented-grain food supplement, on oxidative stress in type 2 diabetic rats. Biofactors 2007, 30, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.C.; Pan, T.M. Antioxidant and pancreas-protective effect of red mold fermented products on streptozotocin-induced diabetic rats. J. Sci. Food Agric. 2010, 90, 2519–2525. [Google Scholar] [CrossRef] [PubMed]
- Tamaya, K.; Matsui, T.; Toshima, A.; Noguchi, M.; Ju, Q.; Miyata, Y.; Tanaka, T.; Tanaka, K. Suppression of blood glucose level by a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves in disaccharide-loaded Sprague-Dawley rats. J. Sci. Food Agric. 2010, 90, 779–783. [Google Scholar] [CrossRef]
- Jung, Y.M.; Lee, S.H.; Lee, D.S.; You, M.J.; Chung, I.K.; Cheon, W.H.; Kwon, Y.S.; Lee, Y.J.; Ku, S.K. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr. Res. 2011, 31, 387–396. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Oboh, G. Attenuation of oxidative stress and hepatic damage by some fermented tropical legume condiment diets in streptozotocin-induced diabetes in rats. Asian Pac. J. Trop. Med. 2012, 5, 692–697. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.L.; Hwang, J.T.; Yi, S.H.; Nam, Y.D.; Lim, S.I. Antidiabetic effect of Morinda citrifolia (Noni) fermented by cheonggukjang in KK-A(y) diabetic mice. Evid. Based Complement. Altern. Med. 2012, 2012, 163280. [Google Scholar] [CrossRef]
- Nam, H.; Jung, H.; Karuppasamy, S.; Lee, J.Y.; Kang, K.D.; Hwang, K.Y.; Seong, S.I.; Suh, J.G. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db Mice. Food Sci. Biotechnol. 2012, 21, 1669–1676. [Google Scholar] [CrossRef]
- Yang, H.J.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Kim, D.S.; Park, S. Jerusalem artichoke and Chungkookjang additively improve insulin secretion and sensitivity in diabetic rats. Nutr. Metab. 2012, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Yeap, S.K.; Ali, N.M.; Yusof, H.M.; Alitheen, N.B.; Beh, B.K.; Ho, W.Y.; Koh, S.P.; Long, K. Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan-induced-diabetic mice. J. Biomed. Biotechnol. 2012, 2012, 285430. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Ha, B.J. Antihyperglycemic and antihyperlipidemic effects of fermented Rhynchosia nulubilis in alloxan-induced diabetic rats. Toxicol. Res. 2013, 29, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, S.L.; Nam, Y.D.; Lee, S.H. Anti-diabetic effects of fermented green tea in KK-Ay diabetic mice. Korean J. Food Sci. Technol. 2013, 45, 488–494. [Google Scholar] [CrossRef]
- Kang, S.J.; Lee, J.E.; Lee, E.K.; Jung, D.H.; Song, C.H.; Park, S.J.; Choi, S.H.; Han, C.H.; Ku, S.K.; Lee, Y.J. Fermentation with Aquilariae lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients 2014, 6, 3536–3571. [Google Scholar] [CrossRef] [PubMed]
- Malardé, L.; Groussard, C.; Lefeuvre-Orfila, L.; Vincent, S.; Efstathiou, T.; Gratas-Delamarche, A. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats. J. Med. Food. 2015, 18, 67–75. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, W.K.; Kim, H.P.; Yoon, Y.G. The efficacy of lowering blood glucose levels using the extracts of fermented bitter melon in the diabetic mice. J. Appl. Biol. Chem. 2015, 58, 259–265. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Kalaivani, M. Protective effect of Monascus fermented rice against STZ-induced diabetic oxidative stress in kidney of rats. J. Food Sci. Technol. 2015, 52, 1434–1443. [Google Scholar] [CrossRef]
- Song, K.; Song, I.B.; Gu, H.J.; Na, J.; Kim, S.; Yang, H.S.; Lee, S.C.; Huh, C.; Kwon, J. Anti-diabetic effect of fermented milk containing conjugated linoleic acid on type II diabetes mellitus. Korean J. Food Sci. Anim. Resour. 2016, 36, 170–177. [Google Scholar] [CrossRef]
- Wang, Z.; Hwang, S.H.; Lee, S.Y.; Lim, S.S. Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Nutr. Res. Pract. 2016, 10, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yang, L.; Ji, J.; Li, B.B.; Li, L.; Ye, M. Physico-chemical properties and hypoglycaemic activity of fermented milks prepared with Anemarrhena asphodeloides water extracts. J. Sci. Food Agric. 2016, 96, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Joung, H.; Kim, B.; Park, H.; Lee, K.; Kim, H.H.; Sim, H.C.; Do, H.J.; Hyun, C.K.; Do, M.S. Fermented Moringa oleifera decreases hepatic adiposity and ameliorates glucose intolerance in high-fat diet-induced obese mice. J. Med. Food 2017, 20, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Tomar, S.K.; Thakur, K.; Singh, A.K. The ameliorative effects of probiotic Lactobacillus fermentum strain RS-2 on alloxan induced diabetic rats. J. Funct. Foods 2017, 28, 275–284. [Google Scholar] [CrossRef]
- Jung, S.J.; Park, S.H.; Choi, E.K.; Cha, Y.S.; Cho, B.H.; Kim, Y.G.; Kim, M.G.; Song, W.O.; Park, T.S.; Ko, J.K.; et al. Beneficial effects of Korean traditional diets in hypertensive and type 2 diabetic patients. J. Med. Food 2014, 17, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Gheshlaghi, Z.B.; Vahedjabbari, M. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Iran. J. Public Health 2015, 44, 228–237. [Google Scholar] [PubMed]
- Alihosseini, N.; Moahboob, S.A.; Farrin, N.; Mobasseri, M.; Taghizadeh, A.; Ostadrahimi, A.R. Effect of probiotic fermented milk (kefir) on serum level of insulin and homocysteine in type 2 diabetes patients. Acta Endocrinol. 2017, 13, 431–436. [Google Scholar] [CrossRef]
- Lee, Y.M.; Wolf, P.; Hauner, H.; Skurk, T. Effect of a fermented dietary supplement containing chromium and zinc on metabolic control in patients with type 2 diabetes: A randomized, placebo-controlled, double-blind cross-over study. Food Nutr. Res. 2016, 60, 30298. [Google Scholar] [CrossRef] [PubMed]
Study Material | Findings | Reference |
---|---|---|
Fermented soymilk with Rhodiola crenulata extracts | ↑ α-glucosidase inhibitory activity. ↑ Tyrosol content. ↓ Salidroside content. ↓ α-amylase inhibitory activity Altered the ACE inhibitory activity. | [18] |
Ethanol extract of fermented rice bran and soybean | ↑ Phosphorylation of Akt ↑ Absorption of 2-NBDG. ↑ Phosphorylation of glucose synthase kinase-3β. No change in AMPK signaling activation | [19] |
Rice wine made with Laminaria japonica J.E. Areschoug | ↑ Protein tyrosine phosphatase 1B inhibition property | [20] |
Fermented papaya | ↑ Platelet function. ↑ Na+/K+-ATPase activity. ↑ Membrane fluidity ↑ TAC ↑ SOD activity ↓ Conjugated diene levels | [21] |
LAB-mediated fermented Camu-camu and soymilk | ↑ α-glucosidase and α-amylase inhibitory activity. Changed ACE inhibitory activity. No significant changes in antioxidant activity and phenolic content. | [22] |
Model System | Study Material | Findings | Reference |
---|---|---|---|
STZ-induced diabetic rats | Fermented tea beverage | ↓ HbA1c ↑ Insulin, hemoglobin and tissue glycogen. Normalized the activities of glucose-6-phosphatase, fructose-1,6-bisphosphatase, and hexokinase | [15] |
STZ-induced diabetic mice | Fermented food paste (Xeniji™) | ↓ Blood glucose ↓ Leptin ↑ Insulin sensitivity ↑ Lipid and glucose metabolism ↓ Proinflammatory cytokines ↓ NF-κB and iNOS gene expression ↓ Nitric oxide level ↓ Cholesterol ↓ Triglycerides ↓ AST, ALT, ALP ↑ Glycogen level ↓ IL-1β and TNF-α | [16] |
KK-Ay/Ta Jc mice | Fermented rice bran and soybean | ↓ HbA1c ↓ Blood glucose ↓ Serum triglyceride ↑ Glucose uptake | [19] |
STZ-induced diabetic OLETF rats | Fermented milk with mushroom extract | ↓ Body mass ↓ Perirenal, visceral, and epididymal fats ↓ Serum triglyceride ↓ Non-esterified fatty acid | [23] |
Nicotinamide and STZ-induced diabetic rats | Fermented Cordyceps sinensis (Berk.) Sacc. | ↓ Diabetic-associated symptoms | [24] |
OLETF rats | Fermented grain foods (Antioxidant biofactor) | ↓ HbA1c ↓ Blood glucose ↓ Plasminogen activator inhibitor-1 ↓ Serum triglyceride ↓ LDL, cholesterol Normalized the UCP2 expression ↑ eNOS proteins | [25] |
STZ-induced diabetic Wistar rats | Red mold fermented products | ↓ Plasma glucose, triglyceride, amylase, and cholesterol levels. ↑ Glutathione disulfide reductase, glutathione reductase, and catalase activity. ↓ ROS | [26] |
Sprague-Dawley rats | Fermented tea | ↓ Blood glucose level | [27] |
ICR mice | Fermented aged black Garlic | ↓ Body mass ↓ Adipocyte diameters ↓ Periovarian fat weight ↓ Abdominal fat ↓ Blood glucose level ↓ AST and ALT levels ↓ BUN and creatinine levels Normalized the kidney tubules | [28] |
STZ-induced diabetic Wistar rats | Fermented legume condiment | ↓ AST, ALT, ALP, and malondialdehyde ↑ Glutathione S-transferase, catalase activity ↑ Glutathione level | [29] |
KK-Ay/TaJcl mice | Fermented noni | ↓ HbA1c ↓ Blood glucose ↓ Serum triglyceride, LDL ↑ Insulin sensitivity | [30] |
db/db Mice | Fermented soybean | ↓ HbA1c ↓ Blood glucose ↑ Plasma insulin level | [31] |
Sprague–Dawley rats | Fermented soybeans (Chungkookjang), and Jerusalem artichoke (Helianthus tuberosus L.) | ↓ Visceral fat ↑ Glucose tolerance ↑ Insulin secretion ↓ Hepatic glucose ↓ Triglyceride ↑ Insulin sensitivity ↑ β-cell mass | [32] |
Alloxan-induced diabetic mice | Fermented mung bean extracts | ↓ Cholesterol ↓ Triglyceride ↓ LDL ↑ Insulin secretion ↑ Antioxidant level | [33] |
Alloxan-induced diabetic rats | Fermented Rhynchosia nulubilis (Yak-Kong) | ↑ Body mass ↑ HDL ↑ Glucose tolerance ↓ Glucose level ↓ Cholesterol ↓ Triglyceride ↓ LDL ↓ Coronary risk factors ↓ Malondialdehyde | [34] |
KK-Ay diabetic mice | Fermented green tea | ↓ HbA1c ↓ Glucose level ↓ Insulin resistance ↑ Glycolysis associated gene expressions | [35] |
db/db mouse | Fermented green tea | ↓ Body weight ↓ Food and water intake ↑ Fecal excretion ↓ Periovarian fat pad mass ↓ White adipocyte diameters ↓ Depths of deposited fat ↑Adiponectin ↓ Serum leptin levels ↓ Pancreatic weight ↓ Pancreatic islet numbers ↓ Blood glucose levels ↑ Insulin level ↓ LDL ↑ HDL ↓ Triglyceride ↓ Serum AST and ALT levels ↓ Steatohepatitis regions ↓ Hepatocyte hypertrophies ↓ BUN and creatinine levels ↓ Lipid peroxidation ↑ GSH ↑ CAT and SOD activity | [36] |
STZ-induced diabetic rats | Fermented soy permeates | ↓ Carboxymethyllysine ↑ SOD and GPx activities ↑ Mn-SOD expression ↓ IL-1β ↓ Uric acid | [37] |
Alloxan-induced diabetic mice | Fermented Momordica charantia L. extract | ↓ Triglyceride ↓ Glucose level ↑ HDL | [38] |
STZ-induced diabetic rats | Monascus purpureus Went (Monascaceae) 254 fermented rice | ↓ HbA1c ↓ Glucose level ↑ Body weight ↑ HDL ↓ LDL ↓ VLDL ↓ Cholesterol ↓ Triglyceride ↑ Insulin level ↓ Urea ↓ Creatinine ↓ Uric acid ↓ BUN ↑ Total protein ↑ SOD, CAT, GSH, and GPX activities | [39] |
db/db mice | Fermented milk with conjugated linoleic acid | ↓ Body weight ↓ Blood glucose ↑ Insulin, and leptin level Improved the glucose and insulin tolerance. ↓ Cholesterol ↓ Triglycerides ↓ LDL ↑ HDL | [40] |
C57BIKsJ db/db mice | Fermented purple Jerusalem artichoke (Helianthus tuberosus L.) extract | ↓ Blood glucose ↑ Insulin ↑ HDL ↓ Cholesterol ↓ Triglycerides ↓ Non-essential fatty acids ↓ α-glucosidase activity | [41] |
STZ-induced diabetic mice | Fermented milk with Anemarrhena asphodeloides Bunge | ↓ Blood glucose ↓ Food consumption ↓ Cholesterol ↓ Triglycerides ↓ BUN ↓ LDL ↓ Creatinine ↓ Malondialdehyde ↑ Insulin ↑ SOD | [42] |
C57BL/6 mice | Fermented Moringa oleifera Lam | ↑ Glucose tolerance ↓ Glucose intolerance ↓ Lipid accumulation ↑ Lipid metabolism ↓ Lipotoxicity ↓ Oxidative stress ↓ Proinflammatory cytokine ↓ Inflammation | [43] |
Alloxan-induced diabetic rats | Fermented milk | ↓ Blood glucose ↓ Cholesterol ↓ LDL ↓ Urea | [44] |
Subjects | Study Material | Findings | Reference |
---|---|---|---|
Volunteers with prediabetes (n = 21) | Kimchi (fresh and fermented) | ↓ Body mass, body mass index, and waist perimeter. ↓ Insulin resistance, and blood pressure. ↑ Insulin sensitivity, QUICKI and disposition index. | [7] |
Hypertensive and type 2 diabetic patients (n = 41) | Korean traditional foods (vegetable and fermented foods) | ↓ HbA1c Improved the heart rate | [45] |
Type 2 diabetic patients (n = 30) | Kefir (probiotic fermented milk) | ↓ HbA1c No significant changes in serum triglyceride, total cholesterol levels. | [46] |
Type 2 diabetic patients (n = 60) | Kefir (probiotic fermented milk) | No changes in serum insulin level. ↓ HOMA-IR value ↓ Homocysteine level ↑ QUICKI | [47] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Kesika, P.; Prasanth, M.I.; Chaiyasut, C. A Mini Review on Antidiabetic Properties of Fermented Foods. Nutrients 2018, 10, 1973. https://doi.org/10.3390/nu10121973
Sivamaruthi BS, Kesika P, Prasanth MI, Chaiyasut C. A Mini Review on Antidiabetic Properties of Fermented Foods. Nutrients. 2018; 10(12):1973. https://doi.org/10.3390/nu10121973
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Periyanaina Kesika, Mani Iyer Prasanth, and Chaiyavat Chaiyasut. 2018. "A Mini Review on Antidiabetic Properties of Fermented Foods" Nutrients 10, no. 12: 1973. https://doi.org/10.3390/nu10121973
APA StyleSivamaruthi, B. S., Kesika, P., Prasanth, M. I., & Chaiyasut, C. (2018). A Mini Review on Antidiabetic Properties of Fermented Foods. Nutrients, 10(12), 1973. https://doi.org/10.3390/nu10121973