NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Influences the Association of Coffee Consumption with Serum Chloride Levels in Male Japanese Health Checkup Examinees: An Exploratory Cross-Sectional Analysis
Abstract
:1. Background
2. Subjects and Methods
2.1. Study Participants
2.2. Data Collection
2.2.1. Clinical Measurements
2.2.2. Self-Administered Questionnaire
2.3. Genotyping
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cano-Marquina, A.; Tarin, J.J.; Cano, A. The impact of coffee on health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C. Coffee intake. Prog. Mol. Biol. Transl. Sci. 2012, 108, 293–322. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee comsumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 358, j5024. [Google Scholar] [CrossRef] [PubMed]
- Malerba, S.; Turati, F.; Galeone, C.; Pelucchi, C.; Verga, F.; La Vecchia, C.; Tavani, A. A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur. J. Epidemiol. 2013, 28, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Crippa, A.; Discacciati, A.; Larsson, S.C.; Wolk, A.; Orsini, N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: A dose-response meta-analysis. Am. J. Epidemiol. 2014, 180, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Je, Y.; Giovannucci, E. Coffee consumption and total mortality: A meta-analysis of twenty prospective cohort studies. Br. J. Nutr. 2014, 111, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Artalejo, F.; López-García, E. Coffee consumption and cardiovascular disease: A condensed review of epidemiological evidence and mechanisms. J. Agric. Food Chem. 2018, 66, 5257–5263. [Google Scholar] [CrossRef] [PubMed]
- De Bacquer, D.; De Backer, G.; De Buyzere, M.; Kornitzer, M. Is low serum chloride level a risk factor for cardiovascular mortality? J. Cardiovasc. Risk 1998, 5, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Mandai, S.; Kanda, E.; Iimori, S.; Naito, S.; Noda, Y.; Kikuchi, H.; Akazawa, M.; Oi, K.; Toda, T.; Sohara, E.; et al. Association of serum chloride level with mortality and cardiovascular events in chronic kidney disease: The CKD-ROUTE study. Clin. Exp. Nephrol. 2017, 21, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Grodin, J.L.; Simon, J.; Hachamovitch, R.; Wu, Y.; Jackson, G.; Halkar, M.; Starling, R.C.; Testani, J.M.; Tang, W.H. Prognostic role of serum chloride levels in acute decompensated heart failure. J. Am. Coll. Cardiol. 2015, 66, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, R.; Li, X.; Yu, J.; Chen, X.; Zhou, Z. Serum chloride as a novel marker for adding prognostic information of mortality in chronic heart failure. Clin. Chim. Acta 2018, 483, 112–118. [Google Scholar] [CrossRef] [PubMed]
- McCallum, L.; Jeemon, P.; Hastie, C.E.; Patel, R.K.; Williamson, C.; Redzuan, A.M.; Dawson, J.; Sloan, W.; Muir, S.; Morrison, D.; et al. Serum chloride is an independent predictor of mortality in hypertensive patients. Hypertension 2013, 62, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Gong, J.S.; Zhang, J.; Yoneda, M.; Yagi, K. Mitochondrial genotype associated with longevity. Lancet 1998, 351, 185–186. [Google Scholar] [CrossRef]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Yoshida, M.; Satoh, M.; Teruya, K.; Masuda, Y.; Honmyo, R.; Uchida, Y.; Takashima, Y. NADH dehydrogenase subunit-2 237 Leu/Met polymorphism modifies the effects of alcohol consumption on risk for hypertension in middle-aged Japanese men. Hypertens. Res. 2007, 30, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Taniyama, M.; Suzuki, Y.; Katagiri, T.; Ban, Y. Association of the mitochondrial DNA 5178A/C polymorphism with maternal inheritance and onset of type 2 diabetes in Japanese patients. Exp. Clin. Endocrinol. Diabetes 2001, 109, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Mukae, S.; Aoki, S.; Itoh, S.; Sato, R.; Nishio, K.; Iwata, T.; Katagiri, T. Mitochondrial 5178A/C genotype is associated with acute myocardial infarction. Circ. J. 2003, 67, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yamada, Y.; Gong, J.S.; Sone, T.; Yokota, M.; Tanaka, M. Association of a 5178C→A (Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 2004, 175, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, R.; Nakagawa, M.; Ikeda, K.; Kodama, T.; Arimura, K.; Akiba, S.; Saito, M.; Ookatsu, Y.; Atsuchi, Y.; Yamano, Y.; et al. Cerebrovascular disorders and genetic polymorphisms: Mitochondrial DNA5178C is predominant in cerebrovascular disorders. J. Neurol. Sci. 2002, 198, 31–35. [Google Scholar] [CrossRef]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Yoshida, M.; Ohtsu, T.; Shirasawa, T.; Sekii, H.; Ito, T.; Kawamoto, T.; et al. NADH dehydrogenase subunit-2 237 Leu/Met polymorphism modulates the effects of coffee consumption on the risk of hypertension in middle-aged Japanese men. J. Epidemiol. 2009, 19, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Yoshida, M.; Ohtsu, T.; Shirasawa, T.; Haseba, Y.; Satoh, M.; Teruya, K.; et al. Longevity-associated mitochondrial DNA 5178 C/A polymorphism modifies the effect of coffee consumption on glucose tolerance in middle-aged Japanese men. In Handbook on Longevity: Genetics, Diet and Disease; Bentely, J.V., Keller, M.A., Eds.; Nova Science Publishers: New York, NY, USA, 2009; pp. 139–160. [Google Scholar]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Yoshida, M.; Shimada, N.; Ohtsu, T.; Shirasawa, T.; Ochiai, H.; Kawamoto, T.; et al. Combined effect of longevity-associated mitochondrial DNA 5178 C/A polymorphism and coffee consumption on the risk of hyper-LDL cholesterolemia in middle-aged Japanese men. J. Hum. Genet. 2010, 55, 577–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokaze, A.; Yoshida, M.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Ochiai, H.; Shirasawa, T.; Nanri, H.; Mitsui, K.; Hoshino, H.; et al. Mitochondrial DNA 5178 C/A polymorphism modulates the effects of coffee consumption on elevated levels of serum liver enzymes in male Japanese health check-up examinees: An exploratory cross-sectional study. J. Physiol. Anthropol. 2016, 35, 15. [Google Scholar] [CrossRef] [PubMed]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Yoshida, M.; Ohtsu, T.; Ochiai, H.; Shirasawa, T.; Nanri, H.; Saga, N.; et al. Longevity-associated mitochondrial DNA 5178 C/A polymorphism modulates the effects of coffee consumption on erythrocytic parameters in Japanese men: An exploratory cross-sectional analysis. J. Physiol. Anthropol. 2014, 33, 37. [Google Scholar] [CrossRef] [PubMed]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Yoshida, M.; Makita, R.; Satoh, M.; Teruya, K.; Sekiguchi, K.; Masuda, Y.; Harada, M.; et al. Longevity-associated NADH dehydrogenase subunit-2 polymorphism and serum electrolyte levels in middle-aged obese Japanese men. Mech. Ageing Dev. 2005, 126, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Ale-Agha, N.; Goy, C.; Jakobs, P.; Spyridopoulos, I.; Gonnissen, S.; Dyballa-Rukes, N.; Aufenvenne, K.; von Ameln, F.; Zurek, M.; Spannbrucker, T.; et al. CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system—New mode of action for caffeine. PLoS Biol. 2018, 16, e2004408. [Google Scholar] [CrossRef] [PubMed]
- Madamanchi, N.R.; Runge, M.S. Mitochondrial dysfunction in atherosclerosis. Circ. Res. 2007, 100, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Gusdon, A.M.; Votyakova, T.V.; Mathews, C.E. mt-Nd2a suppresses reactive oxygen species production by mitochondrial complexes I. and III. J. Biol. Chem. 2008, 283, 10690–10697. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell. Biochem. 2002, 234, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, Y.; Yamakado, M.; Toda, A.; Tani, M.; Ishizaka, N. Relationship between coffee consumption, oxidant status, and antioxidant potential in the Japanese general population. Clin. Chem. Lab. Med. 2013, 51, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Girerd, N.; Duarte, K.; Coiro, S.; McMurray, J.J.; Dargie, H.J.; Pitt, B.; Dickstein, K.; Testani, J.M.; Zannad, F.; et al. Serum chloride and sodium interplay in patients with acute myocardial infarction and heart failure with reduced ejection fraction: An analysis from the high-risk myocardial infarction database initiative. Circ. Heart Fail. 2017, 10, e003500. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, C.; Chen, Y.; He, J.; Dong, Y. Risk of cardiovascular mortality associated with serum sodium and chloride in the general population. Can. J. Cardiol. 2018, 34, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Van Berge-Landry, H.; James, G.D. Serum electrolyte, serum protein, serum fat and renal responses to a dietary sodium challenge: Allostasis and allostatic load. Ann. Hum. Biol. 2004, 31, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Iso, H. Lifestyle and cardiovascular disease in Japan. J. Atheroscler. Thromb. 2011, 18, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Solvoll, K.; Selmer, R.; Løken, E.B.; Foss, O.P.; Trygg, K. Coffee, dietary habits, and serum cholesterol among men and women 35–49 years of age. Am. J. Epidemiol. 1989, 129, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
ND2-237Leu | ND2-237Met | p Value | |
---|---|---|---|
N = 245 | N = 157 | ||
Age (years) * | 54.4 (7.8) | 53.2 (7.8) | 0.142 |
Body mass index (kg/m2) * | 23.3 (2.8) | 23.5 (2.6) | 0.366 |
Systolic blood pressure (mmHg) * | 125.8 (15.8) | 125.7 (14.1) | 0.934 |
Diastolic blood pressure (mmHg) ** welch | 73.9 (10.6) | 73.7 (9.1) | 0.817 |
Low-density lipoprotein cholesterol (mg/dL) * | 121.3 (34.4) | 118.0 (30.8) | 0.319 |
High-density lipoprotein cholesterol (mg/dL) ** welch | 54.5 (13.5) | 56.2 (16.1) | 0.285 |
Triglyceride (mg/dL) *** | 115 (84–160) | 112 (84–158) | 0.948 |
Uric acid (mg/dL) * | 5.94 (1.24) | 5.94 (1.22) | 0.970 |
Serum sodium (mEq/L) * | 140.3 (2.0) | 140.1 (1.9) | 0.200 |
Serum chloride (mEq/L) * | 101.3 (2.5) | 100.8 (2.2) | 0.062 |
Serum potassium (mEq/L) * | 4.19 (0.28) | 4.18 (0.26) | 0.712 |
Serum calcium (mEq/L) * | 9.33 (0.37) | 9.38 (0.38) | 0.180 |
Coffee consumption (<1 cup per day/1–3 cups per day/≥4 cups per day) (%) **** | 44.5/46.2/9.3 | 36.3/51.6/12.1 | 0.237 |
Current smokers (%) **** | 41.7 | 40.8 | 0.852 |
Alcohol consumption (non- or ex-/occasionally/ daily) (%) **** | 18.2/35.2/46.6 | 13.4/38.2/48.4 | 0.431 |
Green tea consumption (<1 cup per day/1–4 cups per day/≥5 cups per day) (%) **** | 21.9/41.7/36.4 | 19.8/47.1/33.1 | 0.562 |
Antihypertensive (%) **** | 19.4 | 13.4 | 0.115 |
Coffee Consumption | p for Trend | |||
---|---|---|---|---|
<1 Cup Per Day | 1–3 Cups Per Day | ≥4 Cups Per Day | ||
ND2-237Leu | N = 109 | N = 113 | N = 23 | |
Serum sodium levels (mEq/L) | 140.1 (0.2) | 140.4 (0.2) | 141.2 (0.4) | 0.033 |
Serum sodium levels (mEq/L) † | 140.1 (0.2) | 140.5 (0.2) | 141.1 (0.4) | 0.044 |
Serum chloride levels (mEq/L) | 100.9 (0.2) | 101.4 (0.2) | 102.9 (0.5) **,*** | 0.001 |
Serum chloride levels (mEq/L) † | 100.7 (0.3) | 101.4 (0.3) | 102.4 (0.5) * | 0.002 |
Serum potassium levels (mEq/L) | 4.19 (0.03) | 4.19 (0.03) | 4.20 (0.05) | 0.904 |
Serum potassium levels (mEq/L) † | 4.18 (0.03) | 4.20 (0.03) | 4.22 (0.06) | 0.439 |
Serum calcium levels (mEq/L) | 9.33 (0.04) | 9.33 (0.04) | 9.32 (0.08) | 0.867 |
Serum calcium levels (mEq/L) † | 9.40 (0.04) | 9.35 (0.04) | 9.33 (0.08) | 0.306 |
ND2-237Met | N = 57 | N = 81 | N = 19 | |
Serum sodium levels (mEq/L) | 140.1 (0.2) | 140.1 (0.2) | 139.8 (0.4) | 0.679 |
Serum sodium levels (mEq/L) † | 140.7 (0.3) | 140.8 (0.3) | 140.5 (0.5) | 0.700 |
Serum chloride levels (mEq/L) | 100.8 (0.3) | 100.9 (0.2) | 100.8 (0.5) | 0.935 |
Serum chloride levels (mEq/L) † | 101.3 (0.4) | 101.2 (0.3) | 101.3 (0.5) | 0.965 |
Serum potassium levels (mEq/L) | 4.17 (0.03) | 4.18 (0.03) | 4.18 (0.06) | 0.905 |
Serum potassium levels (mEq/L) † | 4.14 (0.05) | 4.15 (0.04) | 4.16 (0.07) | 0.836 |
Serum calcium levels (mEq/L) | 9.39 (0.05) | 9.40 (0.04) | 9.30 (0.09) | 0.507 |
Serum calcium levels (mEq/L) † | 9.41 (0.07) | 9.39 (0.06) | 9.24 (0.10) | 0.175 |
Genotype and Coffee Consumption | Frequency (%) | OR (95% CI) | Adjusted OR † (95% CI) | |
---|---|---|---|---|
Normal Levels of Serum Chloride (Serum Chloride Levels ≥100 mEq/L) | Low Levels of Serum Chloride (Serum Chloride Levels <100 mEq/L) | |||
ND2-237Leu | ||||
<1 cup per day | 80 (73.4) | 29 (26.6) | 1 (reference) | 1 (reference) |
1–3 cups per day | 89 (78.8) | 24 (21.2) | 0.744 (0.400–1.382) | 0.615 (0.308–1.226) |
≥4 cups per day | 22 (95.7) | 1 (4.3) | 0.125 (0.016–0.973) * | 0.096 (0.010–0.934) * |
p for trend = 0.032 | p for trend = 0.028 | |||
ND2-237Met | ||||
<1 cup per day | 41 (71.9) | 16 (28.1) | 1 (reference) | 1 (reference) |
1–3 cups per day | 60 (74.1) | 21 (25.9) | 0.897 (0.419–1.922) | 0.803 (0.339–1.902) |
≥4 cups per day | 16 (84.2) | 3 (15.8) | 0.480 (0.123–1.875) | 0.361 (0.076–1.718) |
p for trend = 0.353 | p for trend = 0.264 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Karita, K.; Yoshida, M.; Ochiai, H.; Shirasawa, T.; Yoshimoto, T.; Minoura, A.; Oikawa, K.; et al. NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Influences the Association of Coffee Consumption with Serum Chloride Levels in Male Japanese Health Checkup Examinees: An Exploratory Cross-Sectional Analysis. Nutrients 2018, 10, 1344. https://doi.org/10.3390/nu10101344
Kokaze A, Ishikawa M, Matsunaga N, Karita K, Yoshida M, Ochiai H, Shirasawa T, Yoshimoto T, Minoura A, Oikawa K, et al. NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Influences the Association of Coffee Consumption with Serum Chloride Levels in Male Japanese Health Checkup Examinees: An Exploratory Cross-Sectional Analysis. Nutrients. 2018; 10(10):1344. https://doi.org/10.3390/nu10101344
Chicago/Turabian StyleKokaze, Akatsuki, Mamoru Ishikawa, Naomi Matsunaga, Kanae Karita, Masao Yoshida, Hirotaka Ochiai, Takako Shirasawa, Takahiko Yoshimoto, Akira Minoura, Kosuke Oikawa, and et al. 2018. "NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Influences the Association of Coffee Consumption with Serum Chloride Levels in Male Japanese Health Checkup Examinees: An Exploratory Cross-Sectional Analysis" Nutrients 10, no. 10: 1344. https://doi.org/10.3390/nu10101344
APA StyleKokaze, A., Ishikawa, M., Matsunaga, N., Karita, K., Yoshida, M., Ochiai, H., Shirasawa, T., Yoshimoto, T., Minoura, A., Oikawa, K., Satoh, M., Hoshino, H., & Takashima, Y. (2018). NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Influences the Association of Coffee Consumption with Serum Chloride Levels in Male Japanese Health Checkup Examinees: An Exploratory Cross-Sectional Analysis. Nutrients, 10(10), 1344. https://doi.org/10.3390/nu10101344