The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine
Abstract
:1. Introduction
2. The Effect of CYP1A2 on Inter-Individual Differences in Ergogenicity of Caffeine
3. The Effect of ADORA2A on Inter-Individual Differences in Ergogenicity of Caffeine
4. Limitations and Future Considerations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the world anti-doping agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Rivers, W.H.R.; Webber, H.N. The action of caffeine on the capacity for muscular work. J. Physiol. 1907, 36, 33–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, J.L.; Costill, D.L.; Fink, W.J.; Lower, R.W. Influence of caffeine and carbohydrate feedings on endurance performance. Med. Sci. Sports 1979, 11, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Dalsky, G.P.; Fink, W.J. Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Sports 1978, 10, 155–158. [Google Scholar] [PubMed]
- Van Soeren, M.H.; Sathasivam, P.; Spriet, L.L.; Graham, T.E. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J. Appl. Physiol. 1993, 75, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Jackman, M.; Wendling, P.; Friars, D.; Graham, T.E. Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J. Appl. Physiol. 1996, 81, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Van Soeren, M.H.; Graham, T.E. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J. Appl. Physiol. 1998, 85, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Lovallo, W.R.; Farag, N.H.; Vincent, A.S.; Thomas, T.L.; Wilson, M.F. Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacol. Biochem. Behav. 2006, 83, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, T.E. Caffeine and exercise-Metabolism, endurance and performance. Sport. Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Graham, T.E.; Battram, D.S.; Dela, F.; El-Sohemy, A.; Thong, F.S.L. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl. Physiol. Nutr. Metab. 2008, 33, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Helge, J.W.; MacLean, D.A.; Kiens, B.; Richter, E.A. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J. Physiol. 2000, 529, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriet, L.L. Caffeine and Performance. Int. J. Sport Nutr. 1995, 5, S84–S99. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. Correction to: The effect of acute caffeine ingestion on endurance performance: A systematic review and meta-analysis. Sport. Med. 2018, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A.; Daval, J.-L.; Debry, G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 1992, 17, 139–170. [Google Scholar] [CrossRef]
- Spriet, L.L. Caffeine and exercise performance. In Sports Nutrition; Maughan, R.J., Ed.; Comite International Olympique (International Olympic Committee): Lausanne, Switzerland, 2014. [Google Scholar]
- Meeusen, R.; Roelands, B.; Spriet, L.L. Caffeine, exercise and the brain. Nestle Nutr. Inst. Workshop Ser. 2013, 76, 1–12. [Google Scholar] [PubMed]
- Fredholm, B.B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol. 1995, 76, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Porkka-Heiskanen, T.; Strecker, R.E.; McCarley, R.W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study. Neuroscience 2000, 99, 507–517. [Google Scholar] [CrossRef]
- Marshall, J.M. The roles of adenosine and related substances in exercise hyperaemia. J. Physiol. 2007, 583, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamone, J.D.; Farrar, A.M.; Font, L.; Patel, V.; Schlar, D.E.; Nunes, E.J.; Collins, L.E.; Sager, T.N. Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behav. Brain Res. 2009, 201, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shearer, J.; Graham, T.E. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr. Rev. 2014, 72, 121–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Smith, P.M.; Davison, R.C.R.; Hughes, M.G. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med. Sci. Sports Exerc. 2002, 34, 1785–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sport. Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Acker-Hewitt, T.L.; Shafer, B.M.; Saunders, M.J.; Goh, Q.; Luden, N.D. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl. Physiol. Nutr. Metab. 2012, 37, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Ergogenic effects of caffeine on simulated time-trial performance are independent of fitness level. J. Caffeine Res. 2011, 1, 179–185. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roupoli, L.R.; Valdivieso, B.R. Caffeine does not alter RPE or pain perception during intense exercise in active women. Appetite 2012, 59, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.E.; James, L.J. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J. Sci. Med. Sport 2016, 20, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.M.; Petersen, M.H.; Friis, S.N.; Bangsbo, J. Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Appl. Physiol. Nutr. Metab. 2014, 39, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Church, D.D.; Hoffman, J.R.; LaMonica, M.B.; Riffe, J.J.; Hoffman, M.W.; Baker, K.M.; Varanoske, A.N.; Wells, A.J.; Fukuda, D.H.; Stout, J.R. The effect of an acute ingestion of Turkish coffee on reaction time and time trial performance. J. Int. Soc. Sports Nutr. 2015, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Barrett, C.M.; Minahan, C.L.; Grant, G.D.; Leveritt, M.D.; Coker, R.H. Caffeine, cycling performance and exogenous, CHO oxidation: A dose-response study-Comment. Med. Sci. Sports Exerc. 2009, 41, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Biddulph, C.; Devlin, B.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. The effects of different doses of caffeine on endurance cycling time trial performance. J. Sports Sci. 2012, 30, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.S.; Painelli, V.S.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B.; et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Graham-Paulson, T.S.; Perret, C.; Watson, P.; Goosey-Tolfrey, V.L. Improvement of sprint performance in wheelchair sportsmen with caffeine supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sports Exerc. 2018. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.P.; O’Brien, B.J.; Knez, W.; Paton, C.D. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J. Sci. Med. Sport 2008, 11, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, N.W.; Fell, J.W.; Leveritt, M.D.; Desbrow, B.; Shing, C.M. Effect of caffeine on cycling time-trial performance in the heat. J. Sci. Med. Sport 2014, 17, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Roelands, B.; Buyse, L.; Pauwels, F.; Delbeke, F.; Deventer, K.; Meeusen, R. No effect of caffeine on exercise performance in high ambient temperature. Eur. J. Appl. Physiol. 2011, 111, 3089–3095. [Google Scholar] [CrossRef] [PubMed]
- De Alcantara Santos, R.; Peduti Dal Molin Kiss, M.A.; Silva-Cavalcante, M.D.; Correia-Oliveira, C.R.; Bertuzzi, R.; Bishop, D.J.; Lima-Silva, A.E.; Kiss, M.A.P.D.M.; Silva-Cavalcante, M.D.; Correia-Oliveira, C.R.; et al. Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PLoS ONE 2013, 8, e75399. [Google Scholar]
- Skinner, T.L.; Jenkins, D.G.; Taaffe, D.R.; Leveritt, M.D.; Coombes, J.S. Coinciding exercise with peak serum caffeine does not improve cycling performance. J. Sci. Med. Sport 2013, 16, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Kvamme, B.; Olsen, R.; Drevon, C.A.; Ivy, J.L.; Jensen, J. Caffeine increases performance in cross-country double-poling time trial exercise. Med. Sci. Sport. Exerc. 2013, 45, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Nossum, E.M.; Olsen, R.; Spencer, M.; Jensen, J. Caffeine improves performance in double poling during acute exposure to 2000-m altitude. J. Appl. Physiol. 2015, 119, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Talanian, J.L.; Spriet, L.L. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collomp, K.; Ahmaidi, S.; Chatard, J.C.; Audran, M.; Préfaut, C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Boyett, J.C.; Giersch, G.E.W.; Womack, C.J.; Saunders, M.J.; Hughey, C.A.; Daley, H.M.; Luden, N.D. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients 2016, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guengerich, F.P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Koonrungsesomboon, N.; Khatsri, R.; Wongchompoo, P.; Teekachunhatean, S. The impact of genetic polymorphisms on CYP1A2 activity in humans: A systematic review and meta-analysis. Pharmacogenomics J. 2017. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 1992, 2, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Perera, V.; S. Gross, A.; J. McLachlan, A. Current drug metabolism. In Measurement of CYP1A2 Activity: A Focus on Caffeine as a Probe; Bentham Science Publishers: Sharjah, UAE, 2012; Volume 13, pp. 667–678. [Google Scholar]
- Lelo, A.; Birkett, D.; Robson, R.; Miners, J. Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br. J. Clin. Pharmacol. 1986, 22, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Algrain, H.A.; Thomas, R.M.; Carrillo, A.E.; Ryan, E.J.; Kim, C.-H.; Lettan, R.B.; Ryan, E.J. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhancement with caffeine in recreational cyclists. J. Caffeine Res. 2016, 6, 34–39. [Google Scholar] [CrossRef]
- Giersch, G.E.W.; Boyett, J.C.; Hargens, T.A.; Luden, N.D.; Saunders, M.J.; Daley, H.; Hughey, C.A.; El-Sohemy, A.; Womack, C.J. The effect of the CYP1A2-163 C > A polymorphism on caffeine metabolism and subsequent cycling performance. J. Caffeine Adenosine Res. 2018, 8, 65–70. [Google Scholar] [CrossRef]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’Lugos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sport. 2016, 26, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.S.; Clawson, A.; Martin, M.; Saunders, M.J.; Flohr, J.A.; Bechtel, M.K.; Dunham, W.; Hancock, M.; Womack, C.J. The effect of caffeine on performance in collegiate tennis players. J. Caffeine Res. 2012, 2, 111–116. [Google Scholar] [CrossRef]
- Salinero, J.; Lara, B.; Ruiz-Vicente, D.; Areces, F.; Puente-Torres, C.; Gallo-Salazar, C.; Pascual, T.; Del Coso, J. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Del Coso, J.; Lara, B.; Salinero, J.J. The CYP1A2-163 C > A polymorphism does not alter the effects of caffeine on basketball performance. PLoS ONE 2018, 13, e0195943. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on exercise testing: A meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Gunes, A.; Dahl, M.-L. Variation in CYP1A2 activity and its clinical implications: Influence of environmental factors and genetic polymorphisms. Pharmacogenomics 2008, 9, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Clinical Pharmacology of Caffeine. Annu. Rev. Med. 1990, 41, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C. Caffeine, CYP1A2 genotype, and sports performance: Is timing important? Ir. J. Med. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007, 86, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaenens, C.-M.; Burnouf, S.; Simonin, C.; Van Brussel, E.; Duhamel, A.; Defebvre, L.; Duru, C.; Vuillaume, I.; Cazeneuve, C.; Charles, P.; et al. A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol. Dis. 2009, 35, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Rétey, J.V.; Adam, M.; Khatami, R.; Luhmann, U.F.O.; Jung, H.H.; Berger, W.; Landolt, H.-P. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 2007, 81, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Monda, K.L.; Yu, K.; Paynter, N.; Azzato, E.M.; Bennett, S.N.; Berndt, S.I.; Boerwinkle, E.; Chanock, S.; Chatterjee, N.; et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011, 7, e1002033. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.J.; Hohoff, C.; Heatherley, S.V.; Mullings, E.L.; Maxfield, P.J.; Evershed, R.P.; Deckert, J.; Nutt, D.J. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology 2010, 35, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Childs, E.; Hohoff, C.; Deckert, J.; Xu, K.; Badner, J.; de Wit, H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2008, 33, 2791–2800. [Google Scholar] [CrossRef] [PubMed]
- Alsene, K.; Deckert, J.; Sand, P.; de Wit, H. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2003, 28, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- El Yacoubi, M.; Ledent, C.; Parmentier, M.; Costentin, J.; Vaugeois, J.-M. Reduced appetite for caffeine in adenosine A2A receptor knockout mice. Eur. J. Pharmacol. 2005, 519, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Gracia, E.; Moreno, E.; Cortés, A.; Lluís, C.; Mallol, J.; McCormick, P.J.; Canela, E.I.; Casadó, V. Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology 2013, 71, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; O’Connor, P.J.; Lindheimer, J.B.; Covert, S.F. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: A pilot study. J. Caffeine Res. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Craft, L.L.; Magyar, T.M.; Becker, B.J.; Feltz, D.L. The relationship between the competitive state anxiety inventory-2 and sport performance: A meta-analysis. J. Sport Exerc. Psychol. 2003, 25, 44–65. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Geller, F.; Prokopenko, I.; Feenstra, B.; Aben, K.K.H.; Franke, B.; den Heijer, M.; Kovacs, P.; Stumvoll, M.; et al. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption. Hum. Mol. Genet. 2011, 20, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, A.T.; Nordestgaard, B.G. Coffee intake, cardiovascular disease and all-cause mortality: Observational and Mendelian randomization analyses in 95,000–223,000 individuals. Int. J. Epidemiol. 2016, 45, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Kacprowski, T.; Menni, C.; Gustafsson, S.; Pivin, E.; Adamski, J.; Artati, A.; Eap, C.B.; Ehret, G.; Friedrich, N.; et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum. Mol. Genet. 2016, 25, 5472–5482. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.J.; Li, W.; Chen, J.-F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim. Biophys. Acta Biomembr. 2011, 1808, 1358–1379. [Google Scholar] [CrossRef] [PubMed]
Study | Caffeine Dose | Number of Individuals Who Performed Worse in Caffeine Trials Compared to Placebo |
---|---|---|
Acker-Hewitt et al. [26] | 6 mg·kg−1 | 2/10 |
Astorino et al. [27] | 5 mg·kg−1 | 3/16 |
Astorino et al. [28] | 5 mg·kg−1 | 1/9 |
Beaumont & James [29] | 6 mg·kg−1 | 1/8 |
Christensen et al. [30] | 3 mg·kg−1 | 4/12 |
Church et al. [31] | 3 mg·kg−1 | 8/20 |
Desbrow et al. [32] | 3 mg·kg−1 | 3/9 |
Desbrow et al. [33] | 6 mg·kg−1 | 4/16 |
De Souza Goncalves et al. [34] | 6 mg·kg−1 | 6/40 |
Graham-Paulson et al. [35] | 4 mg·kg−1 | 1/11 |
Guest et al. [36] | 2 mg·kg−1 | 38/101 1 |
Guest et al. [36] | 4 mg·kg−1 | 32/101 1 |
O’Rourke et al. [37] | 5 mg·kg−1 | 3/30 |
Pitchford et al. [38] | 3 mg·kg−1 | 2/9 |
Roelands et al. [39] | 6 mg·kg−1 | 4/8 |
Santos et al. [40] | 5 mg·kg−1 | 2/8 |
Skinner et al. [41] | 6 mg·kg−1 | 1/14 |
Stadheim et al. [42] | 6 mg·kg−1 | 2/10 |
Stadheim et al. [43] | 4.5 mg·kg−1 | 4/13 |
Womack et al. [44] | 6 mg·kg−1 | 3/35 |
Total | 124/379 (33%) |
Study | Sample | Caffeine Dose and Timing Prior to Exercise | Protocol | Results |
---|---|---|---|---|
Algrain et al. [57] | 13 male and 7 female recreational cyclists | 300 mg caffeinated chewing gum; 10 min | 15 min@70% VO2max followed by 10 min rest and 15 min performance cycle ride | No effect of genotype on performance ride performance |
Giersch et al. [58] | 20 male cyclists | 6 mg·kg−1; 60 min | 3 km TT cycle | No effect of genotype on 3 km TT performance |
Guest et al. [36] | 101 male competitive cyclists | 2 mg·kg−1; 75 min | 10 km TT cycle | Improved A/A genotype performance by 4.8%; No significant difference in A/C and C/C genotypes |
Guest et al. [36] | 101 male competitive cyclists | 4 mg·kg−1; 75 min | 10 km TT cycle | Improved A/A genotype 10 km TT performance 6.8%; Decreased C/C genotype 10 km TT performance by 13.7% |
Klein et al. [60] | 8 male and 8 female tennis players | 6 mg·kg−1; 60 min | 30 min intermittent treadmill running followed by tennis skill test | No effect of genotypes on tennis skill test |
Pataky et al. [59] | 25 male and 13 females | 6 mg·kg−1; 60 min; 25 mL 1.14% caffeinated mouth rinse | 3 km TT cycle | Greater improvements in 3 km TT in A/C genotypes compared to A/A genotypes |
Puente et al. [62] | 10 males and 9 female elite basketball players | 3 mg·kg−1; 60 min | 10 repetitions of: Abalakov jump test and change of direction and acceleration test; 20 min simulated basketball game | No effect of genotype on tests performance |
Salinero et al. [61] | 14 male and 7 females recreationally active | 3 mg·kg−1; 60 min | 30 s Wingate test | No effect of genotypes on Wingate performance |
Womack et al. [44] | 35 recreationally competitive male cyclists | 6 mg·kg−1; 60 min | 40 km TT cycle | Improved cycling TT performance to a greater degree in A/A genotypes compared to C allele carriers |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine. Nutrients 2018, 10, 1352. https://doi.org/10.3390/nu10101352
Southward K, Rutherfurd-Markwick K, Badenhorst C, Ali A. The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine. Nutrients. 2018; 10(10):1352. https://doi.org/10.3390/nu10101352
Chicago/Turabian StyleSouthward, Kyle, Kay Rutherfurd-Markwick, Claire Badenhorst, and Ajmol Ali. 2018. "The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine" Nutrients 10, no. 10: 1352. https://doi.org/10.3390/nu10101352
APA StyleSouthward, K., Rutherfurd-Markwick, K., Badenhorst, C., & Ali, A. (2018). The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine. Nutrients, 10(10), 1352. https://doi.org/10.3390/nu10101352