# Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

^{16}el/m

^{2}, and it is equivalent to 0.162 m of L1 signal delay). This is one of the reasons why spherical harmonics expansion (SHE) is used for the global and regional TEC parameterization [15,16,17]. The smoothing effect of SHE undoubtedly results in the low accuracy of the ionospheric models. Also, the ionosphere models often use GPS-only data. Another important aspect is using a single layer model (SLM) ionosphere approximation and its associated relatively simple mapping function [18,19]. This results in rather low relative accuracy of publically available models that amounts to 20–30%, as was shown in Hernández-Pajares et al. [20]. In the aforementioned study, the authors compared several existing and publically available ionosphere models to satellite altimeter data, and the results showed that the accuracy of absolute vertical TEC (vTEC) was on the level of 4–5 TECU (15–25% relative).

## 2. Methodology

#### 2.1. Carrier Phase Bias Estimation

#### 2.2. TEC Calculation Procedure

#### 2.3. TEC Modelling by TPS

_{TPS}values are determined for the data points $\left\{{\mathrm{x}}_{\mathrm{i}},{\mathrm{y}}_{\mathrm{i}}\right\}$. Deviations of these TPS-modelled values from the given TEC data allow for root mean error (RMS) calculation. The received value is compared with an a priori accuracy (${\mathsf{\sigma}}_{\mathrm{a}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{r}}$) of TEC data. If these values are significantly different from each other, the parameter $\mathsf{\alpha}$ is modified and a new TPS function is determined. In another case, the ellipsoidal grid $\left\{{\mathsf{\varphi}}_{\mathrm{G}},{\mathsf{\lambda}}_{\mathrm{G}}\right\}$ is mapped onto the plane by means of UTM projection and TEC

_{TPS}values (${\mathsf{\varphi}}_{\mathrm{G}},{\mathsf{\lambda}}_{\mathrm{G}}$) are calculated. Finally, TEC

_{TPS}values are merged with the ellipsoidal grid. The approximation parameter $\mathsf{\alpha}$ depends strongly on the data to be modelled. We use values of the order of 10

^{−10}for TEC data smoothing and interpolation.

## 3. Numerical Results and Discussion

#### 3.1. Self-Consistency Analysis

- Firstly, a geometry-free linear combination (L4) of carrier phase observations is formed for each continuous data arc (red line, Figure 3 left panel);
- next, sTEC for the same satellite arc extracted from a tested model (GIM_sTEC) is calculated (blue line, Figure 3 left panel);
- then, carrier phase bias is estimated by fitting carrier phase data (L4) into GIM_sTEC, resulting in calibrated sTEC (L4_sTEC) (red line, Figure 3 right panel).

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Alizadeh, M.M.; Schuh, H.; Schmidt, M. Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements. Radio Sci.
**2015**, 50, 539–553. [Google Scholar] [CrossRef] - Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; J. Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 496–509. [Google Scholar]
- Hu, G.; Abbey, D.A.; Castleden, N.; Featherstone, W.E.; Earls, C.; Ovstedal, O.; Weihing, D. An approach for instantaneous ambiguity resolution for medium- to long-range multiple reference station networks. GPS Solut.
**2005**, 9, 1–11. [Google Scholar] [CrossRef] - Wielgosz, P. Quality assessment of GPS rapid static positioning with weighted ionospheric parameters in generalized least squares. GPS Solut.
**2011**, 15, 89–99. [Google Scholar] [CrossRef] - Khodabandeh, A.; Teunissen, P.J.G. Array-aided multifrequency GNSS ionospheric sensing: Estimability and precision analysis. IEEE Trans. Geosci. Remote Sens.
**2016**, 54, 5895–5913. [Google Scholar] [CrossRef] - Kashani, I.; Wielgosz, P.; Grejner-Brzezinska, D.A. The impact of the ionospheric correction latency on long baseline instantaneous kinematic GPS positioning. Surv. Rev.
**2007**, 39, 238–251. [Google Scholar] [CrossRef] - Schunk, R.W.; Scherliess, L.; Sojka, J.J.; Thompson, D. Global Assimilation of Ionospheric Measurements (GAIM). Radio Sci.
**2004**, 39, RS1S02. [Google Scholar] [CrossRef] - Bilitza, D.; McKinnell, L.A.; Reinisch, B.; Fuller-Rowell, T. The international reference ionosphere today and in the future. J. Geodesy
**2011**, 85, 909–920. [Google Scholar] [CrossRef] - Nava, B.; Radicella, S.M.; Azpilicueta, F. Data ingestion into NeQuick 2. Radio Sci.
**2011**, 46, RS0D17. [Google Scholar] [CrossRef] - Gao, Y.; Liao, X.; Liu, Z.Z. Ionosphere modeling using carrier smoothed ionosphere observations from a regional GPS network. Geomatica
**2002**, 56, 97–106. [Google Scholar] - Stanislawska, I.; Juchnikowski, G.; Cander, L.R.; Ciraolo, L.; Bradley, P.A.; Zbyszynski, Z.; Swiatek, A. The kriging method of TEC instantaneous mapping. Adv. Space Res.
**2002**, 29, 945–948. [Google Scholar] [CrossRef] - Wielgosz, P.; Grejner-Brzezinska, D.A.; Kashani, I. Regional ionosphere mapping with kriging and multiquadric methods. J. Glob. Position. Syst.
**2003**, 2, 48–55. [Google Scholar] [CrossRef] - Orùs, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J. Atmos. Sol. Terr. Phys.
**2005**, 67, 1598–1609. [Google Scholar] [CrossRef] - Krypiak-Gregorczyk, A.; Wielgosz, P.; Jarmołowski, W. A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps. Meas. Sci. Technol.
**2017**, 28, 045801. [Google Scholar] [CrossRef] - Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, Astronomical Institute, University of Berne, Bern, Switzerland, 1999. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.; Krankowski, A. The IGS VTEC Maps: A Reliable Source of Ionospheric Information since 1998. J. Geodesy
**2009**, 83, 263–275. [Google Scholar] [CrossRef] - Schmidt, M.; Dettmering, D.; Moßmer, M.; Wang, Y.; Zhang, J. Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Sci.
**2011**, 46, 1–8. [Google Scholar] [CrossRef] - Rovira-Garcia, A.; Juan, J.M.; Sanz, J.; González-Casado, G. A World-Wide Ionospheric Model for Fast Precise Point Positioning. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 4596–4604. [Google Scholar] [CrossRef] - Zus, F.; Deng, Z.; Heise, S.; Wickert, J. Ionospheric mapping functions based on electron density fields. GPS Solut.
**2017**, 21, 873–885. [Google Scholar] [CrossRef] - Hernandez-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; Garcia-Rigo, A.; Orús-Perez, R. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geodesy
**2017**, 91, 1–10. [Google Scholar] [CrossRef] - Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Aragon-Angel, A.; Garcia-Rigo, A.; Salazar, D.; Escudero, M. The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. J. Geodesy
**2011**, 85, 887–907. [Google Scholar] [CrossRef] - Feltens, J. The International GPS Service (IGS) ionosphere working group. Adv. Space Res.
**2003**, 31, 205–214. [Google Scholar] [CrossRef] - Feltens, J. Development of a new three-dimensional mathematical ionosphere model at European space agency/European space operations centre. Space Weather.
**2007**, 5, 1–17. [Google Scholar] [CrossRef] - Mannucci, A.; Wilson, B.; Yuan, D.; Ho, C.; Lindqwister, U.; Runge, T. Global mapping technique for gps-derived ionospheric total electron content measurements. Radio Sci.
**1998**, 33, 565–582. [Google Scholar] [CrossRef] - Hernández-Pajares, M.; Juan, J.; Sanz, J. New approaches in global ionospheric determination using ground gps data. J. Atmos. Sol. Terr. Phys.
**1999**, 61, 1237–1247. [Google Scholar] [CrossRef] - Brunini, C.; Meza, A.; Azpilicueta, F.; Zele, M.A.V. A new ionosphere monitoring technology based on GPS. Astrophys. Space Sci.
**2004**, 290, 415–429. [Google Scholar] [CrossRef] - Bosy, J.; Graszka, W.; Leonczyk, M. ASG-EUPOS—A multifunctional precise satellite positioning system in Poland. Eur. J. Navig.
**2007**, 5, 2–6. [Google Scholar] - Krypiak-Gregorczyk, A.; Wielgosz, P.; Krukowska, M. A new ionosphere monitoring service over the ASG-EUPOS network stations. In Proceedings of the 9th International Conference Environmental Engineering (9th ICEE), Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- Krypiak-Gregorczyk, A.; Wielgosz, P. Carrier phase bias estimation of geometry-free linear combination of GNSS signals. GPS Solut.
**2017**. under review. [Google Scholar] - Lin, L. Remote sensing of ionosphere using GPS measurements. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Shagimuratov, I.; Baran, L.W.; Wielgosz, P.; Yakimova, G.A. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations. Ann. Geophys.
**2002**, 20, 665–671. [Google Scholar] [CrossRef] - Wielgosz, P.; Krypiak-Gregorczyk, A.; Borkowski, A. Regional Ionosphere Modeling Based on Multi-GNSS Data and TPS Interpolation. In Proceedings of the Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017; pp. 287–291. [Google Scholar]
- Duchon, J. Interpolation des fonctions de deux varianles suivant le principle de la flexion des plaques minces. R.A.I.R.O. Anal. Numer.
**1976**, 10, 5–12. [Google Scholar] - Borkowski, A.; Keller, W. Global and local methods for tracking the intersection curve between two surfaces. J. Geodesy
**2005**, 79, 1–10. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of vertical total electron content (vTEC) modelling by thin plate splines (TPS).

**Figure 2.**Variations of ΣKp and Dst indices during March 2015. The vertical red lines highlight the seven test days (14–20 March 2015).

**Figure 3.**Scheme of the L4 data fitting into Global Ionosphere Maps’ (GIM) slant TEC (sTEC) (sTEC calibration).

**Figure 5.**Example TEC maps derived from the UWM-rt1 model on a quiet day before the storm (

**A**), the stormy day (

**B**) and one day after the storm (

**C**) all at 11:00 GPST. Dark lines represent tracks of the GPS PRN30 satellite observed by POTS station.

**Figure 6.**sTEC for selected PRN arcs from calibrated geometry-free L4 (L4_sTEC—red) and selected GIMs (GIM_sTEC—blue) on the quiet day before the storm (

**A**), the stormy day (

**B**) and one day after the storm (

**C**).

**Table 1.**Root mean error (RMS) of post fit residuals for the analyzed TEC maps (TECU). The stormy day is marked with bold font. UWM-rt1—our regional maps, IGS—International GNSS Service global maps, UQRG—high-rate maps provided by Technical University of Catalonia, JPL—global maps from Jet Propulsion Laboratory, CODG—global maps from Center for Orbit determination in Europe, ESA—global maps from European Space Agency.

DOY | UWM-rt1 | IGS | UQRG | JPL | CODG | ESA |
---|---|---|---|---|---|---|

73 | 0.44 | 0.81 | 0.94 | 0.91 | 0.61 | 0.95 |

74 | 0.36 | 0.85 | 0.95 | 0.94 | 0.63 | 1.00 |

75 | 0.38 | 0.83 | 1.00 | 0.95 | 0.62 | 0.84 |

76 | 0.61 | 1.67 | 1.32 | 1.81 | 1.14 | 2.36 |

77 | 0.22 | 0.71 | 0.54 | 0.78 | 0.52 | 0.82 |

78 | 0.24 | 0.84 | 0.61 | 0.91 | 0.56 | 1.20 |

79 | 0.15 | 0.76 | 0.55 | 0.86 | 0.42 | 0.79 |

UWM-rt1 | IGS | UQRG | JPL | CODG | ESA |
---|---|---|---|---|---|

0.34 | 0.92 | 0.84 | 1.02 | 0.64 | 1.14 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. *Remote Sens.* **2017**, *9*, 1221.
https://doi.org/10.3390/rs9121221

**AMA Style**

Krypiak-Gregorczyk A, Wielgosz P, Borkowski A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. *Remote Sensing*. 2017; 9(12):1221.
https://doi.org/10.3390/rs9121221

**Chicago/Turabian Style**

Krypiak-Gregorczyk, Anna, Pawel Wielgosz, and Andrzej Borkowski. 2017. "Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation" *Remote Sensing* 9, no. 12: 1221.
https://doi.org/10.3390/rs9121221