SWOT Observations of Bimodal Seasonal Submesoscale Processes in the Kuroshio Large Meander
Highlights
- SWOT observations reveal an atypical bimodal seasonal cycle of submesoscale eddy kinetic energy in the Kuroshio Large Meander region.
- The late-summer submesoscale enhancement is linked to typhoon forcing and modulated by Kuroshio path variability.
- These findings modify the traditionally winter-dominated submesoscale regime, enriching our understanding of air–sea interaction.
- SWOT demonstrates a unique capability to resolve storm-driven submesoscale processes in energetic western boundary currents during extreme weather events.
Abstract
1. Introduction
2. Materials and Methods
2.1. SWOT Altimetry Data
2.2. Numerical Model Data
2.3. Submesoscale EKE and Eddy Diagnostics
2.4. Energy Conversion and Frontogenesis Diagnostics
3. Results
3.1. Bimodal Seasonal Pattern of Submesoscale Processes in the KLM Region
3.2. Typhoon-Induced Enhancement of Late-Summer Submesoscale Processes
4. Discussion
4.1. Influence of KLM on Seasonal Submesoscale Variability
4.2. SWOT Constraints in Capturing Storm-Induced Submesoscale Variability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. Math. Phys. Eng. Sci. 2016, 472, 20160117. [Google Scholar] [CrossRef]
- Mahadevan, A. The Impact of Submesoscale Physics on Primary Productivity of Plankton. Ann. Rev. Mar. Sci. 2016, 8, 161–184. [Google Scholar] [CrossRef]
- Lévy, M.; Ferrari, R.; Franks, P.J.S.; Martin, A.P.; Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 2012, 39, L14602. [Google Scholar] [CrossRef]
- Rocha, C.B.; Gille, S.T.; Chereskin, T.K.; Menemenlis, D. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett. 2016, 43, 11304–11311. [Google Scholar] [CrossRef]
- Callies, J.; Ferrari, R.; Klymak, J.M.; Gula, J. Seasonality in submesoscale turbulence. Nat. Commun. 2015, 6, 6862. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Thompson, A.F. Submesoscale Dynamics in the Upper Ocean. Annu. Rev. Fluid Mech. 2023, 55, 103–127. [Google Scholar] [CrossRef]
- Yu, X.; Barkan, R.; Naveira Garabato, A.C. Intensification of submesoscale frontogenesis and forward energy cascade driven by upper-ocean convergent flows. Nat. Commun. 2024, 15, 9214. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef]
- Dewar, W.K.; McWilliams, J.C.; Molemaker, M.J. Centrifugal Instability and Mixing in the California Undercurrent. J. Phys. Oceanogr. 2015, 45, 1224–1241. [Google Scholar] [CrossRef]
- Thomas, L.N.; Taylor, J.R.; Ferrari, R.; Joyce, T.M. Symmetric instability in the Gulf Stream. Deep Sea Res. Part. II Top. Stud. Oceanogr. 2013, 91, 96–110. [Google Scholar] [CrossRef]
- Wu, R.; Tong, C.; Liu, Y. A Study of the Vortex Filament Pool Left by a Super Typhoon. J. Geophys. Res. Oceans 2024, 129, e2024JC021198. [Google Scholar] [CrossRef]
- Yi, Z.; Qiu, C.; Wang, D.; Cai, Z.; Yu, J.; Shi, J. Submesoscale Kinetic Energy Induced by Vertical Buoyancy Fluxes During the Tropical Cyclone Haitang. J. Geophys. Res. Oceans 2024, 129, e2023JC020494. [Google Scholar] [CrossRef]
- Tang, H.; Wang, D.; Shu, Y.; Yu, X.; Shang, X.; Qiu, C.; Yu, J.; Chen, J. Vigorous Forced Submesoscale Instability Within an Anticyclonic Eddy During Tropical Cyclone “Haitang” From Glider Array Observations. J. Geophys. Res. Oceans 2025, 130, e2024JC021396. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Sanford, T.B.; Niiler, P.P.; Terrill, E.J. Cold wake of Hurricane Frances. Geophys. Res. Lett. 2007, 34, L15609. [Google Scholar] [CrossRef]
- Jacob, S.D.; Shay, L.K.; Mariano, A.J.; Black, P.G. The 3D Oceanic Mixed Layer Response to Hurricane Gilbert. J. Phys. Oceanogr. 2000, 30, 1407–1429. [Google Scholar] [CrossRef]
- Sun, L.; Yang, Y.-J.; Fu, Y.-F. Impacts of Typhoons on the Kuroshio Large Meander: Observation Evidences. Atmos. Ocean. Sci. Lett. 2015, 2, 45–50. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z. Submesoscale Processes Triggered by Tropical Cyclones and Their Role in Temperature Recovery of Cold Wakes. Geophys. Res. Lett. 2025, 52, e2025GL116241. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Ma, W. Response of the Kuroshio large meander path to typhoons: A case study from a high-resolution ocean model. Ocean Dyn. 2025, 75, 78. [Google Scholar] [CrossRef]
- Qiu, B.; Nakano, T.; Chen, S.; Klein, P. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun. 2017, 8, 14055. [Google Scholar] [CrossRef]
- Sasaki, H.; Klein, P.; Qiu, B.; Sasai, Y. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun. 2014, 5, 5636. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Qiu, B.; Luo, Y.; Cai, W.; Yuan, Q.; Liu, Y.; Zhang, H.; Liu, H.; Miao, M.; et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nat. Commun. 2023, 14, 1335. [Google Scholar] [CrossRef]
- Kawabe, M. Variations of Current Path, Velocity, and Volume Transport of the Kuroshio in Relation with the Large Meander. J. Phys. Oceanogr. 1995, 25, 3103–3117. [Google Scholar] [CrossRef]
- Usui, N.; Tsujino, H.; Fujii, Y.; Kamachi, M. Generation of a trigger meander for the 2004 Kuroshio large meander. J. Geophys. Res. Oceans 2008, 113, C01012. [Google Scholar] [CrossRef]
- Hirata, H.; Nishikawa, H.; Usui, N.; Miyama, T.; Sugimoto, S.; Kusaka, A.; Seto, T. The Kuroshio large meander and its various impacts: A review. J. Oceanogr. 2025, 81, 165–185. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Revisit of the Occurrence of the Kuroshio Large Meander South of Japan. J. Phys. Oceanogr. 2021, 51, 3679–3694. [Google Scholar] [CrossRef]
- Hanawa, K.; Sugimoto, S. Influence of Kuroshio Path Variation South of Japan on Formation of Subtropical Mode Water. J. Phys. Oceanogr. 2014, 44, 1065–1077. [Google Scholar] [CrossRef]
- Sugimoto, S.; Qiu, B.; Schneider, N. Local Atmospheric Response to the Kuroshio Large Meander Path in Summer and Its Remote Influence on the Climate of Japan. J. Clim. 2021, 34, 3571–3589. [Google Scholar] [CrossRef]
- Sasaki, Y.N.; Ito, R. Impact of the Kuroshio large meander on local atmospheric circulation and precipitation in winter. Prog. Earth Planet. Sci. 2024, 11, 15. [Google Scholar] [CrossRef]
- Lizarbe Barreto, D.A.; Chevarria Saravia, R.; Nagai, T.; Hirata, T. Phytoplankton Increase Along the Kuroshio Due to the Large Meander. Front. Mar. Sci. 2021, 8, 677632. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, S. Seasonal Variation of Submesoscale Ageostrophic Motion and Geostrophic Energy Cascade in the Kuroshio. J. Mar. Sci. Eng. 2024, 12, 1121. [Google Scholar] [CrossRef]
- Hayashida, H.; Kiss, A.E.; Miyama, T.; Miyazawa, Y.; Yasunaka, S. Anomalous Nutricline Drives Marked Biogeochemical Contrasts During the Kuroshio Large Meander. J. Geophys. Res. Oceans 2023, 128, e2023JC019697. [Google Scholar] [CrossRef]
- Archer, M.; Wang, J.; Klein, P.; Dibarboure, G.; Fu, L.-L. Wide-swath satellite altimetry unveils global submesoscale ocean dynamics. Nature 2025, 640, 691–696. [Google Scholar] [CrossRef]
- Fu, L.L.; Pavelsky, T.; Cretaux, J.F.; Morrow, R.; Farrar, J.T.; Vaze, P.; Sengenes, P.; Vinogradova-Shiffer, N.; Sylvestre-Baron, A.; Picot, N.; et al. The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water. Geophys. Res. Lett. 2024, 51, e2023GL107652. [Google Scholar] [CrossRef]
- Zhang, Z.; Miao, M.; Qiu, B.; Tian, J.; Jing, Z.; Chen, G.; Chen, Z.; Zhao, W. Submesoscale Eddies Detected by SWOT and Moored Observations in the Northwestern Pacific. Geophys. Res. Lett. 2024, 51, e2024GL110000. [Google Scholar] [CrossRef]
- Dibarboure, G.; Anadon, C.; Briol, F.; Cadier, E.; Chevrier, R.; Delepoulle, A.; Faugère, Y.; Laloue, A.; Morrow, R.; Picot, N.; et al. Blending 2D topography images from the Surface Water and Ocean Topography (SWOT) mission into the altimeter constellation with the Level-3 multi-mission Data Unification and Altimeter Combination System (DUACS). Ocean Sci. 2025, 21, 283–323. [Google Scholar] [CrossRef]
- Tréboutte, A.; Carli, E.; Ballarotta, M.; Carpentier, B.; Faugère, Y.; Dibarboure, G. KaRIn Noise Reduction Using a Convolutional Neural Network for the SWOT Ocean Products. Remote Sens. 2023, 15, 2183. [Google Scholar] [CrossRef]
- Chelton, D.B.; deSzoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical Variability of the First Baroclinic Rossby Radius of Deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Du, T.; Jing, Z. Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension. Remote Sens. 2024, 16, 3488. [Google Scholar] [CrossRef]
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans 2004, 109, C12003. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Ferrari, R.; Hallberg, R. Parameterization of Mixed Layer Eddies. Part. I: Theory Diagnosis. J. Phys. Oceanogr. 2008, 38, 1145–1165. [Google Scholar] [CrossRef]
- Capet, X.; Campos, E.J.; Paiva, A.M. Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett. 2008, 35, L15605. [Google Scholar] [CrossRef]
- Toda, T. Movement of the surface front induced by Kuroshio frontal eddy. J. Geophys. Res. Oceans 1993, 98, 16331–16339. [Google Scholar] [CrossRef]
- Wada, A.; Uehara, T.; Ishizaki, S. Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: Observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Prog. Earth Planet. Sci. 2014, 1, 11. [Google Scholar] [CrossRef]
- Mahadevan, A.; Tandon, A.; Ferrari, R. Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 2010, 115, C03017. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale Dynamics of a Gulf Stream Frontal Eddy in the South Atlantic Bight. J. Phys. Oceanogr. 2016, 46, 305–325. [Google Scholar] [CrossRef]
- Brannigan, L.; Marshall, D.P.; Naveira-Garabato, A.; George Nurser, A.J. The seasonal cycle of submesoscale flows. Ocean Model. 2015, 92, 69–84. [Google Scholar] [CrossRef]
- Dong, J.; Fox-Kemper, B.; Zhang, H.; Dong, C. The Seasonality of Submesoscale Energy Production, Content, and Cascade. Geophys. Res. Lett. 2020, 47, e2020GL087388. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.-H.; Zheng, H.; Wang, M. Submesoscale dynamics accompanying the Kuroshio in the East China Sea. Front. Mar. Sci. 2023, 9, 1124457. [Google Scholar] [CrossRef]
- Fei, Y.; Zhang, S.; Wang, K.; Yu, Y.; Gao, Y.; Cui, T. Spatial and Seasonal Characteristics of the Submesoscale Energetics in the Northwest Pacific Subtropical Ocean. J. Mar. Sci. Eng. 2025, 13, 1691. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, Y.; Hu, J.; Zhang, S. Impact of Topography on Submesoscale Ageostrophic Kinetic Energy in the Kuroshio South of Japan. J. Geophys. Res. Oceans 2025, 130, e2025JC022880. [Google Scholar] [CrossRef]
- Seo, H.; O’Neill, L.W.; Bourassa, M.A.; Czaja, A.; Drushka, K.; Edson, J.B.; Fox-Kemper, B.; Frenger, I.; Gille, S.T.; Kirtman, B.P.; et al. Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review. J. Clim. 2023, 36, 1981–2013. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, X.; Lin, Y. SWOT Observations of Bimodal Seasonal Submesoscale Processes in the Kuroshio Large Meander. Remote Sens. 2026, 18, 384. https://doi.org/10.3390/rs18030384
Zhao X, Lin Y. SWOT Observations of Bimodal Seasonal Submesoscale Processes in the Kuroshio Large Meander. Remote Sensing. 2026; 18(3):384. https://doi.org/10.3390/rs18030384
Chicago/Turabian StyleZhao, Xiaoyu, and Yanjiang Lin. 2026. "SWOT Observations of Bimodal Seasonal Submesoscale Processes in the Kuroshio Large Meander" Remote Sensing 18, no. 3: 384. https://doi.org/10.3390/rs18030384
APA StyleZhao, X., & Lin, Y. (2026). SWOT Observations of Bimodal Seasonal Submesoscale Processes in the Kuroshio Large Meander. Remote Sensing, 18(3), 384. https://doi.org/10.3390/rs18030384

