Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = NWC SAF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 18246 KiB  
Article
Forecasting Cumulonimbus Clouds: Evaluation of New Operational Convective Index Using Lightning and Precipitation Data
by Margarida Belo-Pereira
Remote Sens. 2025, 17(9), 1627; https://doi.org/10.3390/rs17091627 - 3 May 2025
Viewed by 1195
Abstract
Deep convective clouds, such as towering cumulus and Cumulonimbus, can endanger lives and property, also being a major hazard to aviation. This study presents the convective index (IndexCON) used operationally at the Portuguese Meteorological Watch Office. Moreover, IndexCON is evaluated against [...] Read more.
Deep convective clouds, such as towering cumulus and Cumulonimbus, can endanger lives and property, also being a major hazard to aviation. This study presents the convective index (IndexCON) used operationally at the Portuguese Meteorological Watch Office. Moreover, IndexCON is evaluated against lightning and precipitation data for two years, between January 2022 and December 2023, over mainland Portugal and its surrounding areas. This index combines several European Center for Medium-Range Weather Forecasts (ECMWF) prognostic variables, such as stability indices, cloud water content, relative humidity and vertical velocity, using a fuzzy-logic approach. IndexCON performs well in the warm season (May–October), with a probability of detection (POD) of 70%, a false alarm ratio (FAR) of 30% and a probability of false detection (POFD) less than 5%, leading to a Critical Success Index (CSI) above 0.55. However, IndexCON performs worse in the cold season (November–April), when dynamical drivers are more relevant, mainly due to overestimating the convective activity, resulting in CSI and Heidke Skill Score (HSS) values below 0.3. Optimizing the membership functions partially reduces this overestimation. Finally, the added value of IndexCON was illustrated in detail for a thunderstorm episode, using satellite products, lightning and precipitation data. Full article
(This article belongs to the Special Issue Cloud Remote Sensing: Current Status and Perspective)
Show Figures

Figure 1

22 pages, 3743 KiB  
Article
Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean
by Eric Peinó, Joan Bech, Mireia Udina and Francesc Polls
Remote Sens. 2024, 16(3), 457; https://doi.org/10.3390/rs16030457 - 24 Jan 2024
Cited by 5 | Viewed by 2997
Abstract
In the last decade, substantial improvements have been achieved in quantitative satellite precipitation estimates, which are essential for a wide range of applications. In this study, we evaluated the performance of Integrated Multi-satellitE Retrievals for GPM (IMERG V06B) at the sub-daily and daily [...] Read more.
In the last decade, substantial improvements have been achieved in quantitative satellite precipitation estimates, which are essential for a wide range of applications. In this study, we evaluated the performance of Integrated Multi-satellitE Retrievals for GPM (IMERG V06B) at the sub-daily and daily scales. Ten years of half-hourly precipitation records aggregated at different sub-daily periods were evaluated over a region in the Western Mediterranean. The analysis at the half-hourly scale examined the contribution of passive microwave (PMW) and infrared (IR) sources in IMERG estimates, as well as the relationship between various microphysical cloud properties using Cloud Microphysics (CMIC–NWC SAF) data. The results show the following: (1) a marked tendency to underestimate precipitation compared to rain gauges which increases with rainfall intensity and temporal resolution, (2) a weaker negative bias for retrievals with PMW data, (3) an increased bias when filling PMW gaps by including IR information, and (4) an improved performance in the presence of precipitating ice clouds compared to warm and mixed-phase clouds. This work contributes to the understanding of the factors affecting satellite estimates of extreme precipitation. Their relationship with the microphysical characteristics of clouds generates added value for further downstream applications and users’ decision making. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation Extremes)
Show Figures

Figure 1

16 pages, 3508 KiB  
Article
Efficiency of the NWC SAF Version 2021 CRRPh Precipitation Product: Comparison against Previous NWC SAF Precipitation Products and the Influence of Topography
by Athanasios Karagiannidis, José Alberto Lahuerta, Xavier Calbet, Llorenç Lliso, Konstantinos Lagouvardos, Vassiliki Kotroni and Pilar Ripodas
Climate 2023, 11(2), 34; https://doi.org/10.3390/cli11020034 - 25 Jan 2023
Cited by 1 | Viewed by 2093
Abstract
The algorithm of the Convective Rainfall Rate with Microphysical Properties (CRRPh) product of the 2021 version of the Nowcasting and Very Short Range Forecasting Satellite Application Facility (NWC SAF) presents innovative characteristics. It was developed employing principal components analysis to reduce the number [...] Read more.
The algorithm of the Convective Rainfall Rate with Microphysical Properties (CRRPh) product of the 2021 version of the Nowcasting and Very Short Range Forecasting Satellite Application Facility (NWC SAF) presents innovative characteristics. It was developed employing principal components analysis to reduce the number of utilized parameters and uses the same mathematical scheme for day and night, simulating the missing visual channels and satellite-derived cloud water path information that is unavailable during nighttime. Applying adequate statistical methodologies and scores and using rain gauge data as ground truth, it is shown that the new algorithm appears to be significantly improved compared to its predecessors in regard to the delineation of the precipitation areas. In addition, it minimizes the day–night difference in the estimation efficiency, which is a remarkable achievement. The new product suffers from slightly higher errors in the precipitation accumulations. Finally, it is shown that topography does not seem to affect the estimation efficiency of the product. In light of these results, it is argued that, overall, the new algorithm outperforms its predecessors and, possibly after adequate adaptations, can be used as a real-time total precipitation product. Full article
(This article belongs to the Special Issue Climate: 10th Anniversary)
Show Figures

Graphical abstract

19 pages, 3179 KiB  
Article
Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters
by Panagiotis G. Kosmopoulos, Marios T. Mechilis and Panagiota Kaoura
Energies 2022, 15(24), 9406; https://doi.org/10.3390/en15249406 - 12 Dec 2022
Cited by 5 | Viewed by 4126
Abstract
The National Observatory of Athens intends to operate a European Climate Change Observatory (ECCO) on the island of Antikythera, which meets the criteria to become a first-class research infrastructure. This project requires electricity that is unprofitable to get from the thermal units of [...] Read more.
The National Observatory of Athens intends to operate a European Climate Change Observatory (ECCO) on the island of Antikythera, which meets the criteria to become a first-class research infrastructure. This project requires electricity that is unprofitable to get from the thermal units of this small island (20 km2). Solar energy is the subject that was examined in case it can give an environmentally and economically viable solution, both for the observatory and for the whole island. Specifically, observational and modeled data were utilized relevant to solar dynamic and atmospheric parameters in order to simulate the solar energy production by photovoltaics (PV) and Concentrated Solar Power (CSP) plant technologies. To this direction, a synergy of aerosol and cloud optical properties from the Copernicus Atmosphere Monitoring Service (CAMS) and the Eumetsat’s support to nowcasting and very short range forecasting (NWC SAF) with Radiative Transfer Model (RTM) techniques was used in order to quantify the solar radiation and energy production as well as the effect of the atmospheric parameters and to demonstrate energy adequacy scenarios and financial analysis. The ultimate goal is to highlight the opportunity for energy transition and autonomy for both the island itself and the rest of the community with the operation of ECCO, and hence to tackle climate change. Full article
Show Figures

Figure 1

24 pages, 5533 KiB  
Article
Quality-Based Combination of Multi-Source Precipitation Data
by Anna Jurczyk, Jan Szturc, Irena Otop, Katarzyna Ośródka and Piotr Struzik
Remote Sens. 2020, 12(11), 1709; https://doi.org/10.3390/rs12111709 - 27 May 2020
Cited by 24 | Viewed by 4365
Abstract
A quantitative precipitation estimate (QPE) provides basic information for the modelling of many kinds of hydro-meteorological processes, e.g., as input to rainfall-runoff models for flash flood forecasting. Weather radar observations are crucial in order to meet the requirements, because of their very high [...] Read more.
A quantitative precipitation estimate (QPE) provides basic information for the modelling of many kinds of hydro-meteorological processes, e.g., as input to rainfall-runoff models for flash flood forecasting. Weather radar observations are crucial in order to meet the requirements, because of their very high temporal and spatial resolution. Other sources of precipitation data, such as telemetric rain gauges and satellite observations, are also included in the QPE. All of the used data are characterized by different temporal and spatial error structures. Therefore, a combination of the data should be based on quality information quantitatively determined for each input to take advantage of a particular source of precipitation measurement. The presented work on multi-source QPE, being implemented as the RainGRS system, has been carried out in the Polish national meteorological and hydrological service for new nowcasting and hydrological platforms in Poland. For each of the three data sources, different quality algorithms have been designed: (i) rain gauge data is quality controlled and, on this basis, spatial interpolation and estimation of quality field is performed, (ii) radar data are quality controlled by RADVOL-QC software that corrects errors identified in the data and characterizes its final quality, (iii) NWC SAF (Satellite Application Facility on support to Nowcasting and Very Short Range Forecasting) products for both visible and infrared channels are combined and the relevant quality field is determined from empirical relationships that are based on analyses of the product performance. Subsequently, the quality-based QPE is generated with a 1-km spatial resolution every 10 minutes (corresponding to radar data). The basis for the combination is a conditional merging technique that is enhanced by involving detailed quality information that is assigned to individual input data. The validation of the RainGRS estimates was performed taking account of season and kind of precipitation. Full article
(This article belongs to the Special Issue Weather Radar for Hydrological Modelling)
Show Figures

Graphical abstract

16 pages, 6092 KiB  
Case Report
The Convective Rainfall Rate from Cloud Physical Properties Algorithm for Meteosat Second-Generation Satellites: Microphysical Basis and Intercomparisons using an Object-Based Method
by Francisco J. Tapiador, Cecilia Marcos and Juan Manuel Sancho
Remote Sens. 2019, 11(5), 527; https://doi.org/10.3390/rs11050527 - 5 Mar 2019
Cited by 13 | Viewed by 3617
Abstract
The convective rainfall rate from cloud physical properties (CRPh) algorithm for Meteosat second-generation satellites is a day-only precipitation algorithm developed at the Spanish Meteorological Agency (AEMET) for EUMETSAT’ Satellite Application Facility in support of nowcasting and very short-range forecasting (NWC SAF). It is [...] Read more.
The convective rainfall rate from cloud physical properties (CRPh) algorithm for Meteosat second-generation satellites is a day-only precipitation algorithm developed at the Spanish Meteorological Agency (AEMET) for EUMETSAT’ Satellite Application Facility in support of nowcasting and very short-range forecasting (NWC SAF). It is therefore mainly intended to provide input for monitoring and near-real-time forecasts for a few hours. This letter critically discusses the theoretical basis of the algorithm with special emphasis on the empirical values and assumptions in the microphysics of precipitation, and compares the qualitative performances of the CRPh with its antecessor, the convective rainfall rate algorithm (CRR), using an object-based method applied to a case-study. The analyses show that AEMET’s CRPh is physically consistent and outperforms the CRR. The applicability of the algorithm for nowcasting and the challenges of improving the product to an all-day algorithm are also presented. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

15 pages, 6092 KiB  
Article
Using Satellite and Lightning Data to Track Rapidly Developing Thunderstorms in Data Sparse Regions
by Morné Gijben and Estelle De Coning
Atmosphere 2017, 8(4), 67; https://doi.org/10.3390/atmos8040067 - 20 Apr 2017
Cited by 18 | Viewed by 6781
Abstract
Radar systems provide the most useful information about the intensity, movement, and characteristics of severe thunderstorms, but are expensive to maintain and require extensive maintenance. In South Africa, some areas are not covered by radar systems, while very few operational radar systems exist [...] Read more.
Radar systems provide the most useful information about the intensity, movement, and characteristics of severe thunderstorms, but are expensive to maintain and require extensive maintenance. In South Africa, some areas are not covered by radar systems, while very few operational radar systems exist in other southern African countries. Despite these shortcomings, all meteorological centers still have to warn the public of pending severe weather events. The Nowcasting Satellite Application Facility (NWC SAF) in Europe developed software that utilizes satellite data to identify and track rapidly developing thunderstorms (RDT). The NWC software was installed at the South African Weather Service in 2014. Initially, the RDT product was validated against lightning data and the results showed that the RDT product could provide very useful information on possible severe or intense convective storms. This study focusses on the effects of including lightning as an ancillary dataset into the algorithms and then validating the RDT product against radar data. Twenty-five summer cases were considered to determine whether the inclusion of lightning data had a positive effect on the accuracy of the RDT product, when compared to radar data. The results of this study show that in the majority of the cases, the inclusion of lightning data was beneficial to the RDT product. On average the Probability of Detection (POD) improved by 6.6%, the Heidke Skill Score (HSS) by 4.6%, and the False alarm ratio (FAR) by 0.1%. To our knowledge, South Africa is the only African country which is running the NWC SAF software operationally and which has performed an evaluation of the product over Africa against observations from radar systems and lightning sensors. The outcomes of this study are very encouraging for other countries in Africa where convection and severe convection often occur and sophisticated data sources are absent. Initial studies over East Africa indicate that the RDT product can benefit operational practices for the nowcasting of severe convection events. Full article
(This article belongs to the Special Issue Radar Meteorology)
Show Figures

Figure 1

Back to TopTop