Geolocation of Distributed Acoustic Sampling Channels Using X-Band Radar and Optical Remote Sensing
Abstract
1. Introduction
2. Methods
3. Results
3.1. Tests in a Wave Tank Environment
3.2. Radar Synch Testing at Florence, Oregon
3.3. Camera-Based Testing at Duck, North Carolina
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Yan, M.; Bao, Y. Measurement of Cable Forces for Automated Monitoring of Engineering Structures Using Fiber Optic Sensors: A Review. Autom. Constr. 2021, 126, 103687. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R. Fiber-Optic Seismology. Annu. Rev. Earth Planet. Sci. 2021, 49, 309–336. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Pastor-Graells, J.; Corredera, P.; Martin-Lopez, S. Machine Learning Methods for Pipeline Surveillance Systems Based on Distributed Acoustic Sensing: A Review. Appl. Sci. 2017, 7, 841. [Google Scholar] [CrossRef]
- Bouffaut, L.; Goestchel, Q.; Rørstadbotnen, R.A.; Sladen, A.; Hartog, A.; Klinck, H. Estimating Sound Pressure Levels from Distributed Acoustic Sensing Data Using 20 Hz Fin Whale Calls. JASA Express Lett. 2025, 5, 040802. [Google Scholar] [CrossRef]
- Bouffaut, L.; Taweesintananon, K.; Kriesell, H.J.; Rørstadbotnen, R.A.; Potter, J.R.; Landrø, M.; Johansen, S.E.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic. Front. Mar. Sci. 2022, 9, 901348. [Google Scholar] [CrossRef]
- Landrø, M.; Bouffaut, L.; Kriesell, H.J.; Potter, J.R.; Rørstadbotnen, R.A.; Taweesintananon, K.; Johansen, S.E.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Sensing Whales, Storms, Ships and Earthquakes Using an Arctic Fibre Optic Cable. Sci. Rep. 2022, 12, 19226. [Google Scholar] [CrossRef] [PubMed]
- Taweesintananon, K.; Landrø, M.; Potter, J.R.; Johansen, S.E.; Rørstadbotnen, R.A.; Bouffaut, L.; Kriesell, H.J.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Distributed Acoustic Sensing of Ocean-Bottom Seismo-Acoustics and Distant Storms: A Case Study from Svalbard, Norway. Geophysics 2023, 88, B135–B150. [Google Scholar] [CrossRef]
- Rørstadbotnen, R.A.; Eidsvik, J.; Bouffaut, L.; Landrø, M.; Potter, J.; Taweesintananon, K.; Johansen, S.; Storevik, F.; Jacobsen, J.; Schjelderup, O.; et al. Simultaneous Tracking of Multiple Whales Using Two Fiber-Optic Cables in the Arctic. Front. Mar. Sci. 2023, 10, 1130898. [Google Scholar] [CrossRef]
- Spica, Z.J.; Nishida, K.; Akuhara, T.; Pétrélis, F.; Shinohara, M.; Yamada, T. Marine Sediment Characterized by Ocean-Bottom Fiber-Optic Seismology. Geophys. Res. Lett. 2020, 47, e2020GL088360. [Google Scholar] [CrossRef]
- Viens, L.; Perton, M.; Spica, Z.J.; Nishida, K.; Yamada, T.; Shinohara, M. Understanding Surface Wave Modal Content for High-Resolution Imaging of Submarine Sediments with Distributed Acoustic Sensing. Geophys. J. Int. 2022, 232, 1668–1683. [Google Scholar] [CrossRef]
- Viens, L.; Bonilla, L.F.; Spica, Z.J.; Nishida, K.; Yamada, T.; Shinohara, M. Nonlinear Earthquake Response of Marine Sediments With Distributed Acoustic Sensing. Geophys. Res. Lett. 2022, 49, e2022GL100122. [Google Scholar] [CrossRef]
- Spica, Z.J.; Castellanos, J.C.; Viens, L.; Nishida, K.; Akuhara, T.; Shinohara, M.; Yamada, T. Subsurface Imaging with Ocean-Bottom Distributed Acoustic Sensing and Water Phases Reverberations. Geophys. Res. Lett. 2022, 49, e2021GL095287. [Google Scholar] [CrossRef]
- Caudron, C.; Miao, Y.; Spica, Z.J.; Wollin, C.; Haberland, C.; Jousset, P.; Yates, A.; Vandemeulebrouck, J.; Schmidt, B.; Krawczyk, C.; et al. Monitoring Underwater Volcano Degassing Using Fiber-Optic Sensing. Sci. Rep. 2024, 14, 3128. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Soto, M.A.; Williams, E.F.; Martin-Lopez, S.; Zhan, Z.; Gonzalez-Herraez, M.; Martins, H.F. Distributed Acoustic Sensing for Seismic Activity Monitoring. APL Photonics 2020, 5, 030901. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Y.; Shen, Z.; Biondi, E.; Wang, X.; Williams, E.F.; Becker, M.W.; Eslamian, D.; Zhan, Z. Directional Sensitivity of DAS and Its Effect on Rayleigh-Wave Tomography: A Case Study in Oxnard, California. Seismol. Res. Lett. 2023, 94, 887–897. [Google Scholar] [CrossRef]
- Shi, Q.; Williams, E.F.; Lipovsky, B.P.; Denolle, M.A.; Wilcock, W.S.D.; Kelley, D.S.; Schoedl, K. Multiplexed Distributed Acoustic Sensing Offshore Central Oregon. Seismol. Res. Lett. 2025, 96, 784–800. [Google Scholar] [CrossRef]
- Glover, H.E.; Wengrove, M.E.; Holman, R. Measuring Hydrodynamics and Exploring Nearshore Processes Using Distributed Sensing of Fiber-Optic Cable Strain. Coast. Eng. 2024, 190, 104487. [Google Scholar] [CrossRef]
- Williams, E.F.; Zhan, Z.; Martins, H.F.; Fernández-Ruiz, M.R.; Martín-López, S.; González-Herráez, M.; Callies, J. Surface Gravity Wave Interferometry and Ocean Current Monitoring with Ocean-bottom Das. J. Geophys. Res. Ocean. 2022, 127, e2021JC018375. [Google Scholar] [CrossRef]
- Smith, M.M.; Thomson, J.; Baker, M.G.; Abbott, R.E.; Davis, J. Observations of Ocean Surface Wave Attenuation in Sea Ice Using Seafloor Cables. Geophys. Res. Lett. 2023, 50, e2023GL105243. [Google Scholar] [CrossRef]
- Meulé, S.; Pelaez-Quiñones, J.; Bouchette, F.; Sladen, A.; Ponte, A.; Maier, A.; Lior, I.; Coyle, P. Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data. Earth Space Sci. 2024, 11, e2024EA003589. [Google Scholar] [CrossRef]
- Williams, E.F.; Ugalde, A.; Martins, H.F.; Becerril, C.E.; Callies, J.; Claret, M.; Fernandez-Ruiz, M.R.; Gonzalez-Herraez, M.; Martin-Lopez, S.; Pelegri, J.L.; et al. Fiber-optic Observations of Internal Waves and Tides. J. Geophys. Res. Ocean. 2023, 128, e2023JC019980. [Google Scholar] [CrossRef]
- Pelaez-Quiñones, J.D.; Sladen, A.; Ponte, A.; Lior, I.; Ampuero, J.-P.; Rivet, D.; Meulé, S.; Bouchette, F.; Pairaud, I.; Coyle, P. High Resolution Seafloor Thermometry for Internal Wave and Upwelling Monitoring Using Distributed Acoustic Sensing. Sci. Rep. 2023, 13, 17459. [Google Scholar] [CrossRef]
- Spingys, C.P.; Garabato, A.C.N.; Belal, M. Optical Fibre Sensing of Turbulent-Frequency Motions in the Oceanic Environment. Sci. Rep. 2024, 14, 20276. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Spica, Z.J.; Li, J.; Zhan, Z. Detection of Earthquake Infragravity and Tsunami Waves With Underwater Distributed Acoustic Sensing. Geophys. Res. Lett. 2024, 51, e2023GL106767. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cranch, G.A.; Nash, P.J. High-Responsivity Fiber-Optic Flexural Disk Accelerometers. J. Light. Technol. 2000, 18, 1233. [Google Scholar] [CrossRef]
- Hocker, G.B. Fiber-Optic Sensing of Pressure and Temperature. Appl. Opt. 1979, 18, 1445–1448. [Google Scholar] [CrossRef]
- Hubbard, P.G.; Vantassel, J.P.; Cox, B.R.; Rector, J.W.; Yust, M.B.S.; Soga, K. Quantifying the Surface Strain Field Induced by Active Sources with Distributed Acoustic Sensing: Theory and Practice. Sensors 2022, 22, 4589. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Lai, V.H.; Miller, M.S.; Bowden, D.; Fichtner, A. Near-Source Effects on DAS Recording: Implications for Tap Tests. Geophys. J. Int. 2024, 237, 436–444. [Google Scholar] [CrossRef]
- Muñoz, F.; Soto, M.A. Enhancing Fibre-Optic Distributed Acoustic Sensing Capabilities with Blind near-Field Array Signal Processing. Nat. Commun. 2022, 13, 4019. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, D.; Fu, S.; Yedili, N.; Ma, Z. Method of Precise Sensing Channel Positioning for φ-OTDR Based DAS. Meas. Sci. Technol. 2023, 34, 054005. [Google Scholar] [CrossRef]
- Tovar, P.; Lin, J.; Jiang, Z. Fiber Layout Sensing with One Single-Core Standard Single-Mode Fiber. Optica 2025, 12, 259. [Google Scholar] [CrossRef]
- Kirby, J.T.; Dalrymple, R.A. An Approximate Model for Nonlinear Dispersion in Monochromatic Wave Propagation Models. Coast. Eng. 1986, 9, 545–561. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The History and Technical Capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Holman, R.; Bergsma, E.W.J. Updates to and Performance of the Cbathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sens. 2021, 13, 3996. [Google Scholar] [CrossRef]
- Holman, R.; Plant, N.; Holland, T. CBathy: A Robust Algorithm for Estimating Nearshore Bathymetry. J. Geophys. Res. Ocean. 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holman, R.; Glover, H.; Wengrove, M.; Ifju, M.; Honegger, D.; Haller, M. Geolocation of Distributed Acoustic Sampling Channels Using X-Band Radar and Optical Remote Sensing. Remote Sens. 2025, 17, 3142. https://doi.org/10.3390/rs17183142
Holman R, Glover H, Wengrove M, Ifju M, Honegger D, Haller M. Geolocation of Distributed Acoustic Sampling Channels Using X-Band Radar and Optical Remote Sensing. Remote Sensing. 2025; 17(18):3142. https://doi.org/10.3390/rs17183142
Chicago/Turabian StyleHolman, Robert, Hannah Glover, Meagan Wengrove, Marcela Ifju, David Honegger, and Merrick Haller. 2025. "Geolocation of Distributed Acoustic Sampling Channels Using X-Band Radar and Optical Remote Sensing" Remote Sensing 17, no. 18: 3142. https://doi.org/10.3390/rs17183142
APA StyleHolman, R., Glover, H., Wengrove, M., Ifju, M., Honegger, D., & Haller, M. (2025). Geolocation of Distributed Acoustic Sampling Channels Using X-Band Radar and Optical Remote Sensing. Remote Sensing, 17(18), 3142. https://doi.org/10.3390/rs17183142