Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning
Abstract
1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Sources and Pre-Processing
3. Research Framework and Methods
3.1. Research Framework
3.2. Methods
3.2.1. Soil Retention Capacity Calculation
- 1.
- Rainfall Erosivity Factor (R)
- 2.
- Soil Erodibility Factor (K)
- 3.
- Cover and Management Factor (C)
- 4.
- Support Practice Factor (P)
3.2.2. Spatial Correlation
3.2.3. Trend Analysis
- 1.
- Sen’s Slope Estimation
- 2.
- Mann-Kendall Test
3.2.4. Geographically Weighted Regression Model
3.2.5. XGBoost–SHAP Algorithm and Variable Selection
4. Results
4.1. Spatiotemporal Patterns of Soil Conservation Services
4.2. Spatial Autocorrelation Analysis
4.3. Driving Force Analysis of Soil Retention
4.3.1. Overall Analysis
4.3.2. Analysis of Key Factor Response Mechanisms Based on SHAP Dependence Plots
4.3.3. Analysis of Interaction Mechanisms Among Driving Factors
4.3.4. Heat Map Analysis of SHAP Values
4.4. Spatial Heterogeneity Analysis of Key Influencing Factors
5. Discussion
5.1. Correlation Between Soil Retention and Driving Factors
5.2. Geographically Weighted Regression vs. Ordinary Least Squares Regression
5.3. Management Recommendations
5.4. Limitations and Future Perspectives
6. Conclusions
- (1)
- From 2001 to 2020, SCS in Zhejiang Province showed a fluctuating trend of “decline followed by increase.” The western mountainous areas exhibited significantly higher service levels than the eastern coastal and plain regions. Approximately 58% of the area remained stable, while around 40% experienced degradation, indicating an overall stable spatial pattern.
- (2)
- Moran’s I analysis indicated significant spatial clustering of SCS, with High–High clusters mainly distributed in the western mountainous areas and Low–Low clusters found in the eastern coastal and urban expansion zones. The XGBoost + SHAP analysis revealed that natural factors (elevation, slope, and NDVI) made the greatest contributions to SCS, followed by climatic and human activity factors.
- (3)
- GWR analysis revealed the spatial heterogeneity of the driving factors. The positive effects of natural factors were mainly concentrated in mountainous regions, while the negative effects of human activity factors were prominent in coastal cities and densely populated areas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future Land-Use Changes and Its Impacts on Terrestrial Ecosystem Services: A Review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Gong, D.; Huang, M.; Ge, Y.; Zhu, D.; Chen, J.; Chen, Y.; Zhang, L.; Hu, B.; Lai, S.; Lin, H. Revolutionizing Ecological Security Pattern with Multi-Source Data and Deep Learning: An Adaptive Generation Approach. Ecol. Indic. 2025, 173, 113315. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, P.; Yang, L.; Qi, Y.; Liu, J.; Liu, L.; Fan, X.; Hou, K. Assessing the Relative Contributions, Combined Effects and Multiscale Uncertainty of Future Land Use and Climate Change on Water-Related Ecosystem Services in Southwest China Using a Novel Integrated Modelling Framework. Sustain. Cities Soc. 2024, 106, 105400. [Google Scholar] [CrossRef]
- Sun, H.; Huang, M.; Lin, H.; Ge, Y.; Zhu, D.; Gong, D.; Altan, O. Spatiotemporal Dynamics of Ecological Environment Quality in Arid and Sandy Regions with a Particular Remote Sensing Ecological Index: A Study of the Beijing-Tianjin Sand Source Region. Geo-Spat. Inf. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- An, Y.; Zhao, W.; Li, C.; Ferreira, C.S.S. Temporal Changes on Soil Conservation Services in Large Basins across the World. Catena 2022, 209, 105793. [Google Scholar] [CrossRef]
- Rong, Y.; Li, K.; Guo, J.; Zheng, L.; Luo, Y.; Yan, Y.; Wang, C.; Zhao, C.; Shang, X.; Wang, Z. Multi-Scale Spatio-Temporal Analysis of Soil Conservation Service Based on MGWR Model: A Case of Beijing-Tianjin-Hebei, China. Ecol. Indic. 2022, 139, 108946. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, M.; Sun, J.; Qiu, J.; Pei, W.; Zhang, K.; Xu, X.; Liu, D. Dynamic of Grassland Degradation and Its Driving Forces from Climate Variation and Human Activities in Central Asia. Agronomy 2023, 13, 2763. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, D.; Huang, M.; Gong, D.; Li, S.; Xia, Y.; Lin, H.; Altan, O. Assessing the Impact of Climate Change on the Landscape Stability in the Mediterranean World Heritage Site Based on Multi-Sourced Remote Sensing Data: A Case Study of the Causses and Cévennes, France. Remote Sens. 2025, 17, 203. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, M.; Gong, D.; Ge, Y.; Lin, H.; Zhu, D.; Chen, Y.; Altan, O. Carbon Balance Dynamic Evolution and Simulation Coupling Economic Development and Ecological Protection: A Case Study of Jiangxi Province at County Scale from 2000–2030. Int. J. Digit. Earth 2025, 18, 2448572. [Google Scholar] [CrossRef]
- Kass, M.J. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. Nat. Resour. Environ. 2020, 34, 62. [Google Scholar]
- Johnson, J.A.; Baldos, U.L.; Hertel, T.; Nootenboom, C.; Polasky, S.; Roxburgh, T. Global Futures: Modelling the Global Economic Impacts of Environmental Change to Support Policy-Making; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Lu, R.; Dai, E.; Wu, C. Spatial and Temporal Evolution Characteristics and Driving Factors of Soil Conservation Services on the Qinghai-Tibet Plateau. Catena 2023, 221, 106766. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q. Soil Conservation Service Spatiotemporal Variability and Its Driving Mechanism on the Guizhou Plateau, China. Remote Sens. 2020, 12, 2187. [Google Scholar] [CrossRef]
- Lu, S.; Duan, X.; Wei, S.; Lin, H. An Insight to Calculate Soil Conservation Service. Geogr. Sustain. 2022, 3, 237–245. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of Soil Loss Estimation Using the RUSLE Model and SCS-CN Method in Hillslope Mining Areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [Google Scholar] [CrossRef]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M.N. Modeling on Comparison of Ecosystem Services Concepts, Tools, Methods and Their Ecological-Economic Implications: A Review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
- Su, R.; Duan, C.; Chen, B. The Shift in the Spatiotemporal Relationship between Supply and Demand of Ecosystem Services and Its Drivers in China. J. Environ. Manag. 2024, 365, 121698. [Google Scholar] [CrossRef]
- Jian, Z.; Sun, Y.; Wang, F.; Zhou, C.; Pan, F.; Meng, W.; Sui, M. Soil Conservation Ecosystem Service Supply-Demand and Multi Scenario Simulation in the Loess Plateau, China. Glob. Ecol. Conserv. 2024, 49, e02796. [Google Scholar] [CrossRef]
- Fan, K.; Liu, Y.; Zhang, X.; Chen, X.; Li, Y.; Zhou, Y.; Shen, W.; Tao, H.; Gong, C.; Lei, S. Assessing the Relative Contribution of Climate Change and Human Activity Factors to Spatiotemporal Distributions of Sand Fixation Service in the Loess Plateau. GIScience Remote Sens. 2025, 62, 2444630. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; He, Y.; Zhu, L.; Xue, S.; Liang, X.; Ye, C. Soil Erosion Characteristics in Tropical Island Watersheds Based on CSLE Model: Discussion of Driving Mechanisms. Land 2024, 13, 302. [Google Scholar] [CrossRef]
- Li, D.; Cao, W.; Dou, Y.; Wu, S.; Liu, J.; Li, S. Non-Linear Effects of Natural and Anthropogenic Drivers on Ecosystem Services: Integrating Thresholds into Conservation Planning. J. Environ. Manag. 2022, 321, 116047. [Google Scholar] [CrossRef]
- Wang, L.-J.; Gong, J.-W.; Ma, S.; Wu, S.; Zhang, X.; Jiang, J. Ecosystem Service Supply–Demand and Socioecological Drivers at Different Spatial Scales in Zhejiang Province, China. Ecol. Indic. 2022, 140, 109058. [Google Scholar] [CrossRef]
- Zhou, L.; Cui, W.; Yang, F. Spatiotemporal Variations and Driving Forces Analysis of Ecosystem Water Conservation in Coastal Areas of China. Ecol. Indic. 2024, 162, 112019. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zhu, D.; Zhang, M.; Xu, Y.; Zhou, L.; Huang, Z. Spatiotemporal Patterns of Remotely Sensed Phenology and Their Response to Climate Change and Topography in Subtropical Bamboo Forests during 2001-2017: A Case Study in Zhejiang Province, China. GIScience Remote Sens. 2023, 60, 2163575. [Google Scholar] [CrossRef]
- Huang, M.; Zhong, S.; Ge, Y.; Lin, H.; Chang, L.; Zhu, D.; Zhang, L.; Xiao, C.; Altan, O. Evaluating the Performance of SDGSAT-1 GLI Data in Urban Built-Up Area Extraction from the Perspective of Urban Morphology and City Scale: A Case Study of 15 Cities in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 17166–17180. [Google Scholar] [CrossRef]
- Padminda, H.B.G.D.M.; Abeysingha, N.S.; Amarasekara, T.; Ray, R.L.; Samarathunga, D.K. The Use of InVEST-SDR Model to Evaluate Soil Erosion and Sedimentation in the Closer Catchment of a Proposed Tropical Reservoir in Sri Lanka. Int. J. Sediment Res. 2025, 40, 253–268. [Google Scholar]
- Kumar, S.; Hole, R.M. Geospatial Modelling of Soil Erosion and Risk Assessment in Indian Himalayan Region—A Study of Uttarakhand State. Environ. Adv. 2021, 4, 100039. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S. Estimating Rainfall Erosivity from Daily Precipitation Records: A Comparison among Methods Using Data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef]
- Williams, J.R. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1990, 329, 421–428. [Google Scholar]
- Tian, P.; Zhu, Z.; Yue, Q.; He, Y.; Zhang, Z.; Hao, F.; Guo, W.; Chen, L.; Liu, M. Soil Erosion Assessment by RUSLE with Improved P Factor and Its Validation: Case Study on Mountainous and Hilly Areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Sajadi, P.; Sang, Y.-F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A. Performance Evaluation of Long NDVI Timeseries from AVHRR, MODIS and Landsat Sensors over Landslide-Prone Locations in Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 3172. [Google Scholar] [CrossRef]
- Dong, D.; Zhao, Z.; Gao, H.; Zhou, Y.; Gong, D.; Du, H.; Fujioka, Y. Analysis of Spatiotemporal Evolution and Driving Forces of Vegetation from 2001 to 2020: A Case Study of Shandong Province, China. Forests 2024, 15, 1245. [Google Scholar] [CrossRef]
- Kashki, A.; Karami, M.; Zandi, R.; Roki, Z. Evaluation of the Effect of Geographical Parameters on the Formation of the Land Surface Temperature by Applying OLS and GWR, A Case Study Shiraz City, Iran. Urban Clim. 2021, 37, 100832. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J.; Bai, X. Use of Interpretable Machine Learning for Understanding Ecosystem Service Trade-Offs and Their Driving Mechanisms in Karst Peak-Cluster Depression Basin, China. Ecol. Indic. 2024, 166, 112474. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, W.; Tang, S.; Zhang, J. Effects of Patterns of Urban Green-Blue Landscape on Carbon Sequestration Using XGBoost-SHAP Model. J. Clean. Prod. 2024, 476, 143640. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Z.; Dong, B.; Wang, H.; Han, Y. Analyzing Trade-Offs, Synergies, and Driving Factors of Ecosystem Services in Anhui Province Using Spatial Analysis and XG-Boost Modeling. Ecol. Indic. 2025, 171, 113098. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Ma, X.; Zhang, F.; Ji, Q.; Zhang, J. Ecological Security Pattern Based on XGBoost-MCR Model: A Case Study of the Three Gorges Reservoir Region. J. Clean. Prod. 2024, 470, 143252. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-Temporal Variations of Ecosystem Services and Their Drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Q.; Hancock, J.T.; Khoshgoftaar, T.M. Feature Selection Strategies: A Comparative Analysis of SHAP-Value and Importance-Based Methods. J. Big Data 2024, 11, 44. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Li, Y.; Lin, Y. Identifying Trade-Offs and Synergies among Land Use Functions Using an XGBoost-SHAP Model: A Case Study of Kunming, China. Ecol. Indic. 2025, 172, 113330. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, G.; Yu, H.; Zhao, J.; Yin, Y. Revealing the Nonlinear Impact of Human Activities and Climate Change on Ecosystem Services in the Karst Region of Southeastern Yunnan Using the XGBoost-SHAP Model. Forests 2024, 15, 1420. [Google Scholar] [CrossRef]
- Mirghaed, F.A.; Souri, B. Contribution of Land Use, Soil Properties and Topographic Features for Providing of Ecosystem Services. Ecol. Eng. 2023, 189, 106898. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Sun, S.; Wen, Y.; Chen, H. Study on the Driving Factors of Ecosystem Service Value under the Dual Influence of Natural Environment and Human Activities. J. Clean. Prod. 2023, 420, 138408. [Google Scholar] [CrossRef]
- Tian, P.; Liu, Y.; Li, J.; Pu, R.; Cao, L.; Zhang, H. Spatiotemporal Patterns of Urban Expansion and Trade-Offs and Synergies among Ecosystem Services in Urban Agglomerations of China. Ecol. Indic. 2023, 148, 110057. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of Human Activity Intensity on Habitat Quality Based on Nighttime Light Remote Sensing: A Case Study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Luo, Q.; Bao, Y.; Wang, Z.; Chen, X.; Wei, W.; Fang, Z. Vulnerability Assessment of Urban Remnant Mountain Ecosystems Based on Ecological Sensitivity and Ecosystem Services. Ecol. Indic. 2023, 151, 110314. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the Spatial Heterogeneity of Urban Heat Island Effect and Its Relationship to Block Morphology with the Geographically Weighted Regression Model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Wu, R.; Li, Z.; Wang, S. The Varying Driving Forces of Urban Land Expansion in China: Insights from a Spatial-Temporal Analysis. Sci. Total Environ. 2021, 766, 142591. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zuo, L.; Gao, J.; Jiang, Y.; Du, F.; Zhang, Y. Exploring the Driving Factors of Trade-Offs and Synergies among Ecological Functional Zones Based on Ecosystem Service Bundles. Ecol. Indic. 2023, 146, 109827. [Google Scholar] [CrossRef]
- Zong, R.; Fang, N.; Zeng, Y.; Lu, X.; Wang, Z.; Dai, W.; Shi, Z. Soil Conservation Benefits of Ecological Programs Promote Sustainable Restoration. Earth’s Future 2025, 13, e2024EF005287. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Li, P.; Li, X.; Liu, Z.; Zhao, Y. Assessment of Occupation of Natural Habitat by Urban Expansion and Its Impact on Crucial Ecosystem Services in China’s Coastal Zone. Ecol. Indic. 2023, 154, 110682. [Google Scholar] [CrossRef]
- Wu, W.; Zeng, H.; Guo, C.; You, W.; Xu, H.; Hu, Y.; Wang, M.; Liu, X. Spatial Heterogeneity and Management Challenges of Ecosystem Service Trade-Offs: A Case Study in Guangdong Province, China. Environ. Manag. 2024, 73, 378–394. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of Coordinative Relationship between Comprehensive Ecosystem Service and Urbanization: A Case Study of Yangtze River Delta Urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Soubry, I.; Doan, T.; Chu, T.; Guo, X. A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sens. 2021, 13, 3262. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Liu, Y.; Liu, R. Spatial-Temporal Dynamics and Drivers of Ecosystem Service Interactions along the Yellow River Area in Shaanxi Province. J. Clean. Prod. 2025, 496, 145095. [Google Scholar] [CrossRef]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the Spatially Heterogeneous Relationships between Tradeoffs and Synergies among Ecosystem Services and Potential Drivers Considering Geographic Scale in Bairin Left Banner, China. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Chang, J.; Asiedu Kumi, M.; Leng, M. Scale Effects and Time Variation of Trade-Offs and Synergies among Ecosystem Services in the Pearl River Delta, China. Remote Sens. 2022, 14, 5173. [Google Scholar] [CrossRef]
- Kang, J.; Li, C.; Zhang, B.; Zhang, J.; Li, M.; Hu, Y. How Do Natural and Human Factors Influence Ecosystem Services Changing? A Case Study in Two Most Developed Regions of China. Ecol. Indic. 2023, 146, 109891. [Google Scholar] [CrossRef]
Category | Properties | Abbreviation | Format and Spatial Resolution | Time Resolution | Data Source and Description |
---|---|---|---|---|---|
target variable | Soil Conservation Service | SCS | Raster, 1000 m | 2001, 2005, 2010, 2015, 2020 | |
human activity factors | population density | POP | Raster, 100 m | Annual, 2001–2020 | https://www.worldpop.org/ (accessed on 18 April 2025) |
gross domestic product | GDP | Raster, ~1 km | Annual, 2001–2020 | http://www.geodata.cn (accessed on 18 April 2025) | |
land use/land cover | LULC | Raster, ~30 m | Annual, 2001–2020 | CLCD v01 product | |
nighttime light | NTL | Raster, ~1 km | Annual, 2001–2020 | DMSP-OLS and VIIRS | |
natural environment factors | elevation | ELE | Raster, 30 m | Static | https://cmr.earthdata.nasa.gov/ (accessed on 22 April 2025), NASA SRTMGL1_003 |
slope | SLO | Raster, 30 m | Static | Derived from NASA SRTMGL1_003 | |
aspect | ASP | Raster, 30 m | Static | Derived from NASA SRTMGL1_003 | |
soil texture | STEX | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025) | |
bulk density | BD | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025) | |
available water capacity (awc) | AWC | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025) | |
drainage | DRA | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025) | |
root depth | RD | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025) | |
fao90/phase1 | FAO90, Phase1 | Raster, ~1 km | Static | https://openknowledge.fao.org/ (accessed on 18 April 2025), fao90 represents soil type | |
climate factors | precipitation | PRE | Raster, ~1 km | Annual, 2001–2020 | http://www.geodata.cn (accessed on 20 April 2025) |
temperature | TEM | Raster, ~1 km | Annual, 2001–2020 | http://www.geodata.cn (accessed on 20 April 2025) | |
maximum ndvi | NDVI | Raster, 250 m | Annual, 2001–2020 | MODIS MOD13Q1 | |
solar radiation | RAD | Raster, ~4 km | Annual, 2001–2020 | TERRACLIMATE |
2001 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
City | Sum | Percent | Sum | Percent | Sum | Percent | Sum | Percent | Sum | Percent |
Quzhou | 1349.88 | 0.0964 | 1186.81 | 0.0897 | 2162.39 | 0.1066 | 2054.4 | 0.1104 | 1532.69 | 0.1103 |
Jinihua | 983.62 | 0.0703 | 929.2 | 0.0703 | 1450.02 | 0.0715 | 1286.22 | 0.0691 | 1012.89 | 0.0729 |
Shaoxing | 506.44 | 0.0362 | 471.96 | 0.0357 | 669.67 | 0.033 | 613.71 | 0.033 | 517.52 | 0.0372 |
Hangzhou | 1786.6 | 0.1276 | 1509.74 | 0.1141 | 2663.66 | 0.1313 | 2744.45 | 0.1475 | 2330.11 | 0.1677 |
Lishui | 5203.56 | 0.3717 | 4976.35 | 0.3763 | 7658.71 | 0.3776 | 6812.2 | 0.3661 | 4729.76 | 0.3404 |
Taizhou | 1166.98 | 0.0834 | 1175.52 | 0.0889 | 1604.5 | 0.0791 | 1409.69 | 0.0758 | 1089.42 | 0.0784 |
Huzhou | 259.64 | 0.0185 | 202.1 | 0.0153 | 319.72 | 0.0158 | 375.34 | 0.0202 | 347.09 | 0.025 |
Jiaxing | 2.6 | 0.0002 | 2.01 | 0.0002 | 2.69 | 0.0001 | 3.19 | 0.0002 | 3.24 | 0.0002 |
Wenzhou | 2149.23 | 0.1535 | 2214.91 | 0.1675 | 2990.22 | 0.1474 | 2620.07 | 0.1408 | 1719.33 | 0.1237 |
Ningbo | 475.75 | 0.034 | 451.95 | 0.0342 | 590.59 | 0.0291 | 519.54 | 0.0279 | 454.98 | 0.0327 |
Zhoushan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.75 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Gong, D.; Zhao, M.; Dong, D. Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning. Remote Sens. 2025, 17, 2865. https://doi.org/10.3390/rs17162865
Qiu Z, Gong D, Zhao M, Dong D. Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning. Remote Sensing. 2025; 17(16):2865. https://doi.org/10.3390/rs17162865
Chicago/Turabian StyleQiu, Zhengyang, Daohong Gong, Mingxing Zhao, and Dejin Dong. 2025. "Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning" Remote Sensing 17, no. 16: 2865. https://doi.org/10.3390/rs17162865
APA StyleQiu, Z., Gong, D., Zhao, M., & Dong, D. (2025). Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning. Remote Sensing, 17(16), 2865. https://doi.org/10.3390/rs17162865