Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Hazard
3.2. Vulnerability
3.3. Exposure
3.4. Trend Analysis and Testing
3.5. Analytic Hierarchy Process (AHP)
3.6. Spatial Autocorrelation and Hotspot Analysis
4. Result
4.1. Hazard of CDHEs
4.2. Vulnerability of CDHEs
4.3. Exposure of CDHEs
4.4. Risks of CDHEs
4.5. GPP Response to the Agricultural Risk of CDHEs
5. Discussion
5.1. Temporal and Spatial Variations in the Risk of CDHEs
5.2. Impact of CDHEs on GPP
5.3. Agricultural Adaptation Strategies Under CDHEs
5.4. Limitations and Future Work
6. Conclusions
- (1)
- During the period 2000–2019, the agricultural risk level of CDHEs was high in the Poyang Lake Plain and the Dongting Lake Plain, moderate in the Jianghan Plain, and extremely high in southern Hunan Province. Over the last decade of the study period, agricultural risk increased by 21.9% in the Poyang Lake Plain and 9.9% in the Jianghan Plain, while it decreased by 15.2% in the Dongting Lake Plain.
- (2)
- Both the agricultural risk of CDHEs and GPP exhibited significant spatial aggregation. In the MRYRB, high-risk areas overlapped spatially with low GPP areas at a rate of 52.6%, indicating a clear spatial association between the two. This was particularly evident within the three major plains, where vegetation productivity was significantly suppressed under these conditions.
- (3)
- To cope with the agricultural risk of CDHEs, it is necessary to re-evaluate the existing irrigation and drainage capacities and develop a multi-source irrigation system in the three major plains areas. In southern Hunan province, where the forest coverage rate is high, nature-based solutions should be adopted after strengthening the construction of hydraulic infrastructure, such as maintaining the stability of forest ecosystems and high water retention conditions. In addition, building a targeted hazard early-warning system is also very important to withstand CDHE risk based on structural measures.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AghaKouchak, A.; Cheng, L.; Mazdiyasni, O.; Farahmand, A. Global Warming and Changes in Risk of Concurrent Climate Extremes: Insights from the 2014 California Drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Gan, T.Y.; Zhang, S.; Shi, L.; Zhao, J.; Su, X.; Song, S. Climate Change Determines Future Population Exposure to Summertime Compound Dry and Hot Events. Earth’s Future 2022, 10, e2022EF003015. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, Y.; Wang, T.; Liu, W.; Wang, H.; Liu, Y.; Sun, F. Projected Changes in Socioeconomic Exposure to Compound Hot–Dry/Hot–Wet Days in China under CMIP6 Forcing Scenarios. Theor. Appl. Climatol. 2023, 154, 601–612. [Google Scholar] [CrossRef]
- Feng, S.; Hao, Z.; Wu, X.; Zhang, X.; Hao, F. A Multi-Index Evaluation of Changes in Compound Dry and Hot Events of Global Maize Areas. J. Hydrol. 2021, 602, 126728. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, Z.; Fu, Y.; Feng, S.; Zhang, X.; Wu, X.; Hao, F. Probabilistic Assessments of the Impacts of Compound Dry and Hot Events on Global Vegetation during Growing Seasons. Environ. Res. Lett. 2021, 16, 074055. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Singh, J.; Ashfaq, M.; Skinner, C.B.; Anderson, W.B.; Mishra, V.; Singh, D. Enhanced Risk of Concurrent Regional Droughts with Increased ENSO Variability and Warming. Nat. Clim. Change 2022, 12, 163–170. [Google Scholar] [CrossRef]
- Weber, T.; Bowyer, P.; Rechid, D.; Pfeifer, S.; Raffaele, F.; Remedio, A.R.; Teichmann, C.; Jacob, D. Analysis of Compound Climate Extremes and Exposed Population in Africa Under Two Different Emission Scenarios. Earth’s Future 2020, 8, e2019EF001473. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Ge, Q. Mapping 20 Years of Irrigated Croplands in China Using MODIS and Statistics and Existing Irrigation Products. Sci. Data 2022, 9, 407. [Google Scholar] [CrossRef]
- Cornwall, W. Europe’s Deadly Floods Leave Scientists Stunned. Science 2021, 373, 372–373. [Google Scholar] [CrossRef]
- Duan, A.; Zhong, Y.; Xu, G.; Yang, K.; Tian, B.; Wu, Y.; Bai, H.; Hu, E. Quantifying the 2022 Extreme Drought in the Yangtze River Basin Using GRACE-FO. J. Hydrol. 2024, 630, 130680. [Google Scholar] [CrossRef]
- Schiermeier, Q. Climate Change Made North America’s Deadly Heatwave 150 Times More Likely. Nature 2021. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, M.; Gong, D.; Ge, Y.; Lin, H.; Zhu, D.; Chen, Y.; Altan, O. Carbon Balance Dynamic Evolution and Simulation Coupling Economic Development and Ecological Protection: A Case Study of Jiangxi Province at County Scale from 2000–2030. Int. J. Digit. Earth 2025, 18, 2448572. [Google Scholar] [CrossRef]
- Gong, D.; Huang, M.; Ge, Y.; Zhu, D.; Chen, J.; Chen, Y.; Zhang, L.; Hu, B.; Lai, S.; Lin, H. Revolutionizing Ecological Security Pattern with Multi-Source Data and Deep Learning: An Adaptive Generation Approach. Ecol. Indic. 2025, 173, 113315. [Google Scholar] [CrossRef]
- Gong, D.; Dong, D.; Du, H.; Zhou, Y.; Fu, S.; Fujioka, Y. Spatiotemporal Coupling Mechanisms and Driving Forces of Ecosystem Services and Human Activity from a Multidimensional Perspective. Int. J. Digit. Earth 2025, 18, 2512061. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Changed Relationship between Compound Dry-Hot Events and ENSO at the Global Scale. J. Hydrol. 2023, 621, 129559. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Bevacqua, E.; Suarez-Gutierrez, L.; Jézéquel, A.; Lehner, F.; Vrac, M.; Yiou, P.; Zscheischler, J. Advancing Research on Compound Weather and Climate Events via Large Ensemble Model Simulations. Nat. Commun. 2023, 14, 2145. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Wang, P.; Song, X.; Wei, X.; Tao, F. Identifying the Impact of Multi-Hazards on Crop Yield—A Case for Heat Stress and Dry Stress on Winter Wheat Yield in Northern China. Eur. J. Agron. 2016, 73, 55–63. [Google Scholar] [CrossRef]
- Deng, H.; Yin, Y.; Zong, X.; Yin, M. Future Drought Risks in the Yellow River Basin and Suggestions for Targeted Response. Int. J. Disaster Risk Reduct. 2023, 93, 103764. [Google Scholar] [CrossRef]
- Hoag, H. Russian Summer Tops “universal” Heatwave Index. Nature 2014. [Google Scholar] [CrossRef]
- Philip, S.Y.; Kew, S.F.; Van Oldenborgh, G.J.; Anslow, F.S.; Seneviratne, S.I.; Vautard, R.; Coumou, D.; Ebi, K.L.; Arrighi, J.; Singh, R.; et al. Rapid Attribution Analysis of the Extraordinary Heat Wave on the Pacific Coast of the US and Canada in June 2021. Earth Syst. Dyn. 2022, 13, 1689–1713. [Google Scholar] [CrossRef]
- Hedayat, H.; Seyed Kaboli, H. Drought Risk Assessment: The Importance of Vulnerability Factors Interdependencies in Regional Drought Risk Management. Int. J. Disaster Risk Reduct. 2024, 100, 104152. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the Complex Impacts of Drought: A Key to Enhancing Drought Mitigation and Preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef]
- Vyas, S.; Barua, A.; Mallikarjuna, C.; Baghel, T. An Integrated Approach for Managing Drought Risks in the Eastern Himalayan Region of India. Int. J. Disaster Risk Reduct. 2024, 112, 104789. [Google Scholar] [CrossRef]
- Field, C.B. Climate Change 2014: Impacts, Adaptation, and Vulnerability: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar]
- Carrão, H.; Naumann, G.; Barbosa, P. Mapping Global Patterns of Drought Risk: An Empirical Framework Based on Sub-National Estimates of Hazard, Exposure and Vulnerability. Glob. Environ. Change 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Li, P.; Jia, L.; Lu, J.; Jiang, M.; Zheng, C. A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sens. 2024, 16, 780. [Google Scholar] [CrossRef]
- Viner, D.; Ekstrom, M.; Hulbert, M.; Warner, N.K.; Wreford, A.; Zommers, Z. Understanding the Dynamic Nature of Risk in Climate Change Assessments—A New Starting Point for Discussion. Atmos. Sci. Lett. 2020, 21, e958. [Google Scholar] [CrossRef]
- Carrão, H.; Naumann, G.; Barbosa, P. Global Projections of Drought Hazard in a Warming Climate: A Prime for Disaster Risk Management. Clim. Dyn. 2018, 50, 2137–2155. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H. Multi-Dimensional Assessment of Drought Vulnerability in Africa: 1960–2100. Sci. Total Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef] [PubMed]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future Drought Risk in Africa: Integrating Vulnerability, Climate Change, and Population Growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Khoshnazar, A.; Corzo Perez, G.; Sajjad, M. Characterizing Spatial–Temporal Drought Risk Heterogeneities: A Hazard, Vulnerability and Resilience-Based Modeling. J. Hydrol. 2023, 619, 129321. [Google Scholar] [CrossRef]
- Simpson, N.P.; Mach, K.J.; Constable, A.; Hess, J.; Hogarth, R.; Howden, M.; Lawrence, J.; Lempert, R.J.; Muccione, V.; Mackey, B.; et al. A Framework for Complex Climate Change Risk Assessment. One Earth 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Babel, M.S.; Chawrua, L.; Khadka, D.; Tingsanchali, T.; Shanmungam, M.S. Agricultural Drought Risk and Local Adaptation Measures in the Upper Mun River Basin, Thailand. Agric. Water Manag. 2024, 292, 108655. [Google Scholar] [CrossRef]
- Elusma, M.; Tung, C.; Lee, C.-C. Agricultural Drought Risk Assessment in the Caribbean Region: The Case of Haiti. Int. J. Disaster Risk Reduct. 2022, 83, 103414. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Xu, Y. Drought Risk and Water Resources Assessment in the Beijing-Tianjin-Hebei Region, China. Sci. Total Environ. 2022, 832, 154915. [Google Scholar] [CrossRef]
- Marzi, S.; Mysiak, J.; Essenfelder, A.H.; Pal, J.S.; Vernaccini, L.; Mistry, M.N.; Alfieri, L.; Poljansek, K.; Marin-Ferrer, M.; Vousdoukas, M. Assessing Future Vulnerability and Risk of Humanitarian Crises Using Climate Change and Population Projections within the INFORM Framework. Glob. Environ. Change 2021, 71, 102393. [Google Scholar] [CrossRef]
- Tabari, H.; Willems, P. Sustainable Development Substantially Reduces the Risk of Future Drought Impacts. Commun. Earth Environ. 2023, 4, 180. [Google Scholar] [CrossRef]
- Wu, H.; Su, X.; Singh, V.P.; Feng, K.; Niu, J. Agricultural Drought Prediction Based on Conditional Distributions of Vine Copulas. Water Resour. Res. 2021, 57, e2021WR029562. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Chen, J.; She, D.; Wang, G.; Zhang, Q.; Xia, J.; Zhang, Y. Projecting Global Drought Risk Under Various SSP-RCP Scenarios. Earth’s Future 2023, 11, e2022EF003420. [Google Scholar] [CrossRef]
- Sun, H.; Huang, M.; Lin, H.; Ge, Y.; Zhu, D.; Gong, D.; Altan, O. Spatiotemporal Dynamics of Ecological Environment Quality in Arid and Sandy Regions with a Particular Remote Sensing Ecological Index: A Study of the Beijing-Tianjin Sand Source Region. Geo-Spat. Inf. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- Feng, S.; Hao, Z. Quantitative Contribution of ENSO to Precipitation-Temperature Dependence and Associated Compound Dry and Hot Events. Atmos. Res. 2021, 260, 105695. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Xia, Y.; Singh, V.P.; Zhang, X. A Monitoring and Prediction System for Compound Dry and Hot Events. Environ. Res. Lett. 2019, 14, 114034. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Mandula, N.; Runa, A.; Gu, X.; Jin, L. Characterisation of Compound Dry and Hot Events in Inner Mongolia and Their Relationship with Large-Scale Circulation Patterns. J. Hydrol. 2022, 612, 128296. [Google Scholar] [CrossRef]
- Rajeev, A.; Mahto, S.S.; Mishra, V. Climate Warming and Summer Monsoon Breaks Drive Compound Dry and Hot Extremes in India. iScience 2022, 25, 105377. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, H.; Huang, J.; Yuan, Y. Prediction of Multi-Scale Meteorological Drought Characteristics over the Yangtze River Basin Based on CMIP6. Water 2022, 14, 2996. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Zhang, Y. Agricultural Risk Assessment of Compound Dry and Hot Events in China. Agric. Water Manag. 2023, 277, 108128. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, Q.; Chen, F.; Zhang, H. The sustainable development strategy of rice production in the middle reaches of Yangtze River. Res. Agric. Mod. 2018, 39, 28–36. [Google Scholar] [CrossRef]
- Lv, T.; Fu, S.; Hu, H.; Wang, L.; Geng, C. Dynamic Evolution and Convergence Characteristics of Cultivated Land Green Use Efficiency Based on the Constraint of Agricultural Green Transition: Taking the Main Grain Producing Areas in the Middle Reaches of the Yangtze River as an Example. China Land Sci. 2023, 37, 107–118. [Google Scholar]
- Sun, F.; Mejia, A.; Zeng, P.; Che, Y. Projecting Meteorological, Hydrological and Agricultural Droughts for the Yangtze River Basin. Sci. Total Environ. 2019, 696, 134076. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; She, D. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. ShuiLiXueBao 2020, 53, 1143–1153. [Google Scholar] [CrossRef]
- Qian, P.; Cao, Z. Promotion of irrigative development and guarantee of food security in Yangtze River Basin. Yangtze River 2013, 44, 84–87. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, X.; Zheng, F.; Wang, B. Trends and Variability of Daily Temperature Extremes during 1960–2012 in the Yangtze River Basin, China. Glob. Planet. Change 2015, 124, 79–94. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Global Evidence of Rapid Flash Drought Recovery by Extreme Precipitation. Environ. Res. Lett. 2024, 19, 044031. [Google Scholar] [CrossRef]
- Sun, M.; Li, X.; Xu, H.; Wang, K.; Anniwaer, N.; Hong, S. Drought Thresholds That Impact Vegetation Reveal the Divergent Responses of Vegetation Growth to Drought across China. Glob. Change Biol. 2023, 30, e16998. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, S.; Chen, B.; Weng, Q.; Bai, Y.; Yang, J.; Yu, L.; Xu, B. A 30 m annual cropland dataset of China from 1986 to 2021. Earth Syst. Sci. Data 2024, 16, 2297–2316. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Tang, Q.; Zhang, X.; Feng, S.; Hao, F. Population Exposure to Compound Dry and Hot Events in China under 1.5 and 2 °C Global Warming. Int. J. Climatol. 2021, 41, 5766–5775. [Google Scholar] [CrossRef]
- Dong, D.; Tao, H.; Ding, G.; Zhang, Z. Historical population and cropland exposure to heatwaves in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2022, 38, 288–295. [Google Scholar] [CrossRef]
- Cao, S.; He, Y.; Zhang, L.; Sun, Q.; Zhang, Y.; Li, H.; Wei, X.; Liu, Y. Spatiotemporal Dynamics of Vegetation Net Ecosystem Productivity and Its Response to Drought in Northwest China. GIScience Remote Sens. 2023, 60, 2194597. [Google Scholar] [CrossRef]
- Li, H.; Shi, D.; Xia, R.; Ni, S.; Zhang, J.; Wang, R. Evolution characteristics and driving mechanism for the spatiotemporal pattern of sloping farmland in Chongqing based on geodetector. Trans. Chin. Soc. Agric. Eng. 2022, 38, 280–290. [Google Scholar] [CrossRef]
- Chen, Y.; Duo, L.; Zhao, D.; Zeng, Y.; Guo, X. The Response of Ecosystem Vulnerability to Climate Change and Human Activities in the Poyang Lake City Group, China. Environ. Res. 2023, 233, 116473. [Google Scholar] [CrossRef]
- Yifan, Z.; Xiaomeng, S.; Zice, M. Historical changes and future prediction of compound drought and heatwave events in the Yangtze River Basin. Prog. Geogr. 2024, 43, 2242–2257. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, M.; Yin, Y. The Analysis on the Cultivated Land Abandoned and It’s Driving Factors in Poyang Lake Plain. J. Jiangxi Norm. Univ. Nat. Sci. 2018, 42, 38–44. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Qian, Z.; Wang, S.; Wang, M.; Liu, Z.; Li, H.; Xia, Y.; Zhao, Z.; Li, T.; et al. Drought trend and its impact on ecosystem carbon sequestration in Lancang—Mekong River Basin. Acta Geogr. Sin. 2024, 79, 747–764. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.; Wang, X.; Li, L.; Ciais, P.; Zscheischler, J.; Wang, Y.; Tang, Y.; Müller, C.; Webber, H.; et al. Extreme Rainfall Reduces One-Twelfth of China’s Rice Yield over the Last Two Decades. Nat. Food 2023, 4, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Villani, L.; Castelli, G.; Piemontese, L.; Penna, D.; Bresci, E. Drought Risk Assessment in Mediterranean Agricultural Watersheds: A Case Study in Central Italy. Agric. Water Manag. 2022, 271, 107748. [Google Scholar] [CrossRef]
- Baloch, Z.A.; Tan, Q.; Fahad, S. Analyzing farm households’ perception and choice of adaptation strategies towards climate change impacts: A case study of vulnerable households in an emerging Asian region. Environ. Sci. Pollut. Res. 2022, 29, 57306–57316. [Google Scholar] [CrossRef] [PubMed]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global Crop Yield Response to Extreme Heat Stress under Multiple Climate Change Futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought Vulnerability and Risk Assessments: State of the Art, Persistent Gaps, and Research Agenda. Environ. Res. Lett. 2019, 14, 083002. [Google Scholar] [CrossRef]
Data Name | Data Type | Spatial Resolution | Data Source |
---|---|---|---|
Meteorological data | netcdf | 10 km | European Centre for Medium-Range Weather Forecasts |
GPP | Tiff | 500 m | MODIS (https://modis.gsfc.nasa.gov/, accessed on 12 December 2024) |
Population | Tiff | 1 km | Chinese Academy of Sciences |
GDP | Tiff | 1 km | Chinese Academy of Sciences |
Cultivated land | Tiff | 30 m | [60] |
Irrigation data | Tiff | 500 m | [11] |
Term | Characteristic Vector | Weight Value (%) | Largest Eigenvalue | CI Value |
---|---|---|---|---|
Hazard | 1.366 | 45.547 | ||
Exposure | 0.700 | 23.346 | 3.001 | 0 |
Vulnerability | 0.933 | 31.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, J.; Gong, D.; Ding, M.; Zhong, W.; Deng, M.; Kang, Q.; Ding, Y.; Liu, Y.; Zhang, J. Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin. Remote Sens. 2025, 17, 2892. https://doi.org/10.3390/rs17162892
Wang Y, Wang J, Gong D, Ding M, Zhong W, Deng M, Kang Q, Ding Y, Liu Y, Zhang J. Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin. Remote Sensing. 2025; 17(16):2892. https://doi.org/10.3390/rs17162892
Chicago/Turabian StyleWang, Yonggang, Jiaxin Wang, Daohong Gong, Mingjun Ding, Wentao Zhong, Muping Deng, Qi Kang, Yibo Ding, Yanyi Liu, and Jianhua Zhang. 2025. "Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin" Remote Sensing 17, no. 16: 2892. https://doi.org/10.3390/rs17162892
APA StyleWang, Y., Wang, J., Gong, D., Ding, M., Zhong, W., Deng, M., Kang, Q., Ding, Y., Liu, Y., & Zhang, J. (2025). Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin. Remote Sensing, 17(16), 2892. https://doi.org/10.3390/rs17162892