Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea
Abstract
1. Introduction
2. Data and Methods
2.1. Decomposition of Sea-Level Signal
2.2. Spatiotemporal and Frequency Analysis of SLA
2.3. Nonlinear Modeling and Machine Learning of SLA
2.4. Ocean Mass Change and Regional Sea-Level Budget Closure
3. Results
3.1. Temporal Trends and Physical Attribution
3.2. Spatial Disaggregation and Forcing Shifts
3.3. Climate Variability and Regional Teleconnections
3.3.1. Seasonal SLA Variability and Hydroclimatic Forcing
3.3.2. ENSO and AMO Teleconnections
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 2019, 9, 705–710. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; Van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Longhurst, A.R. A review of the oceanography of the Gulf of Guinea. Bull. Inst. Fr. Afr. Noire Sér. A Sci. Nat. 1962, 24, 633–663. [Google Scholar]
- Aman, A.; Testut, L.; Woodworth, P.L.; Aarup, A.; Dixon, D.J. Seasonal sea level variability in the Gulf of Guinea from altimetry and tide gauge. Rev. Ivoir. Sci. Technol. 2007, 9, 105–118. [Google Scholar]
- Ayinde, A.S.; Yu, H.; Wu, K. Sea level variability and modeling in the Gulf of Guinea using supervised machine learning. Sci. Rep. 2023, 13, 21318. [Google Scholar] [CrossRef]
- Ghomsi, F.E.K.; Raj, R.P.; Bonaduce, A.; Halo, I.; Nyberg, B.; Cazenave, A.; Rouault, M.; Johannessen, O.M. Sea level variability in Gulf of Guinea from satellite altimetry. Sci. Rep. 2024, 14, 4759. [Google Scholar] [CrossRef]
- Dieng, H.B.; Dadou, I.; Léger, F.; Morel, Y.; Jouanno, J.; Lyard, F.; Allain, D. Sea level anomalies using altimetry, model and tide gauges along the African coasts in the Eastern Tropical Atlantic Ocean: Inter-comparison and temporal variability. Adv. Space Res. 2021, 68, 534–552. [Google Scholar] [CrossRef]
- Evadzi, P.I.K.; Zorita, E.; Hünicke, B. West African sea level variability under a changing climate: What can we learn from the observational period? J. Coast. Conserv. 2019, 23, 759–771. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Proc. Neth. Acad. Arts Sci. 1950, 53, 521–525. [Google Scholar]
- Iler, A.M.; Inouye, D.W.; Schmidt, N.M.; Høye, T.T. Detrending phenological time series improves climate–phenology analyses and reveals evidence of plasticity. Ecology 2017, 98, 647–655. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical orthogonal functions and statistical weather prediction. In Statistical Forecasting Project Report 1; MIT Department of Meteorology: Cambridge, MA, USA, 1956. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Chelton, D.B.; DeSzoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Guiavarc’h, C.; Tréguier, A.M.; Vangriesheim, A. Deep currents in the Gulf of Guinea: Along slope propagation of intraseasonal waves. Ocean Sci. 2009, 5, 141–153. [Google Scholar] [CrossRef]
- Wiafe, G.; Nyadjro, E.S. Satellite observations of upwelling in the Gulf of Guinea. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1066–1070. [Google Scholar] [CrossRef]
- Bouttes, N.; Gregory, J.M.; Kuhlbrodt, T.; Smith, R.S. The drivers of projected North Atlantic sea level change. Clim. Dyn. 2014, 43, 1531–1544. [Google Scholar] [CrossRef]
- Chafik, L.; Nilsen, J.E.; Dangendorf, S.; Reverdin, G.; Frederikse, T. North Atlantic Ocean circulation and decadal sea level change during the altimetry era. Sci. Rep. 2019, 9, 1041. [Google Scholar] [CrossRef]
- Adamec, D.; O’Brien, J.J. The seasonal upwelling in the Gulf of Guinea due to remote forcing. J. Phys. Oceanogr. 1978, 8, 1050–1060. [Google Scholar] [CrossRef]
- Verstraete, J.M. The seasonal upwellings in the Gulf of Guinea. Prog. Oceanogr. 1992, 29, 1–60. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Vellinga, M.; Arribas, A.; Graham, R. Seasonal forecasts for regional onset of the West African monsoon. Clim. Dyn. 2013, 40, 3047–3070. [Google Scholar] [CrossRef]
- McGirr, R.; Tregoning, P.; Purcell, A.; McQueen, H. Significant local sea level variations caused by continental hydrology signals. Geophys. Res. Lett. 2024, 51, e2024GL108394. [Google Scholar] [CrossRef]
- Slangen, A.B.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.; Marzeion, B.; Melet, A.; Palmer, M.D.; et al. Evaluating model simulations of twentieth-century sea level rise. Part I: Global mean sea level change. J. Clim. 2017, 30, 8539–8563. [Google Scholar] [CrossRef]
- Meyssignac, B.; Slangen, A.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Richter, K.; et al. Evaluating model simulations of twentieth-century sea-level rise. Part II: Regional sea-level changes. J. Clim. 2017, 30, 8565–8593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akeem Shola, A.; Yu, H.; Wu, K.; Krakauer, N. Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea. Remote Sens. 2025, 17, 2834. https://doi.org/10.3390/rs17162834
Akeem Shola A, Yu H, Wu K, Krakauer N. Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea. Remote Sensing. 2025; 17(16):2834. https://doi.org/10.3390/rs17162834
Chicago/Turabian StyleAkeem Shola, Ayinde, Huaming Yu, Kejian Wu, and Nir Krakauer. 2025. "Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea" Remote Sensing 17, no. 16: 2834. https://doi.org/10.3390/rs17162834
APA StyleAkeem Shola, A., Yu, H., Wu, K., & Krakauer, N. (2025). Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea. Remote Sensing, 17(16), 2834. https://doi.org/10.3390/rs17162834