“Ground–Aerial–Satellite” Atmospheric Correction Method Based on UAV Hyperspectral Data for Coastal Waters
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Measured Hyperspectral Data of the Water Body
2.2.2. Measured Chl-a Concentration Data
2.2.3. Collection of UAV Hypercritical Images
- (1)
- Radiometric calibration
- (2)
- Image stitching
- (3)
- Noise filtering
2.2.4. Sentinel-2 Multispectral Images
2.3. Matching Method of “Ground–Aerial–Satellite” Data
2.3.1. “Ground–Aerial–Satellite” Spectral Matching by Equivalent Transform
2.3.2. “Aeria–-Satellite” Spatial Matching by Average Pooling
2.3.3. “Ground–Aerial” Spatial Matching by MPP
2.4. GASAC
2.4.1. GAAC by MPP-ELM
2.4.2. ASAC by Transformer
- (1)
- Data preparation
- (2)
- ETO algorithm
- (a)
- Initialization phase: Randomly generate an initial population within the upper and lower bounds as follows:
- (b)
- Constrained Exploration: Dynamically adjust the search space to balance computational efficiency and solution quality:
- (c)
- Exponential-trigonometric optimization: During the development phase, the ETO algorithm will focus on local perturbations near the determined optimal solution to further improve the quality of the solution:
- (d)
- Changeover Method: The ETO algorithm uses a CM to enable flexible changeover between exploration and exploitation. When the value of , ETO is in the exploration mode. Conversely, when , ETO shifts to the exploitation mode, thus ensuring the exploration and exploitation of the entire search domain while avoiding getting stuck in local optima.
- (3)
- Optimization and training strategy of ETMNet
2.5. Verifying AC Accuracy by Inverting Chl-a Concentration
2.5.1. Feature Selection and Combination for Chl-a Concentration Inversion
2.5.2. Chl-a Concentration Inversion Model Building
2.6. Model Accuracy Metrics
3. Results
3.1. Evaluation of GAAC Results
3.2. Evaluation of ASAC Results
3.3. Comparison of Correction Results from the Three GAC Strategies
3.4. Impact of Atmospheric Correction on Chl-a Concentration Inversion
3.4.1. Building of the Chl-a Concentration Inversion Model Based on Measured Spectra
3.4.2. Chl-a Concentration Inversion Accuracy of Different GAC Results
4. Discussion
4.1. Discussion on GAAC
4.2. Discussion on ASAC
4.2.1. The Synchronization Data Requirements of the ASAC
4.2.2. Generalization Ability Analysis of ETMNet to UAVs Equipped with RGB Channel Sensors
4.3. Discussion on GASAC
4.3.1. Comparison Between GASAC and Baseline AC Models
4.3.2. Verifying Temporal Generalization Performance of the GASAC Model in This Study
5. Conclusions
- (1)
- Synchronously collected “ground–aerial–satellite” data from nearshore waters provide a large number of “pixel-to-pixel” atmospheric correction samples, revealing finer spatial distribution characteristics of water optical properties. These data offer continuous, sufficient, and accurate AC samples, enabling models with strong fitting capability to effectively learn the nonlinear atmospheric effects in satellite-to-aerial radiative transfer, thus exhibiting great potential for multi-scale cooperative atmospheric correction in nearshore environments.
- (2)
- The Transformer architecture, using an MLP as its base learner, shows strong capability in modeling nonlinear atmospheric effects. However, the volume of synchronized UAV–satellite AC samples with consistent spatial and spectral characteristics remains insufficient for deep learning. By incorporating the ETO strategy to guide parameter design and optimization of the Transformer, a robust, small-sample-adaptable, and high-performing model—ETMNet—can be constructed, achieving high-accuracy atmospheric correction in nearshore waters.
- (3)
- The experimental results show that, compared to the “point-to-pixel” GSAC method using only in situ spectra, the stepwise GASAC framework integrating all three data sources improves the of the predicted in situ water-leaving radiation from 0.837 to 0.962 and raises the Chl-a concentration inversion accuracy from 0.645 to 0.818. Compared to the latest baseline model, the of predicted in situ water-leaving radiation increased from 0.914 to 0.962.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.; Shen, F.; Verhoef, W. An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast. Remote Sens. Environ. 2017, 191, 197–214. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- McClain, C.R. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef]
- Shi, J.; Shen, Q.; Yao, Y.; Zhang, F.; Li, J.; Wang, L. Field Radiometric Calibration of a Micro-Spectrometer Based on Remote Sensing of Plateau Inland Water Colors. Appl. Sci. 2023, 13, 2117. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Zhang, S.; Huang, H.; Pan, Y.; Pan, D. A Review of Machine Learning Applications in Ocean Color Remote Sensing. Remote Sens. 2025, 17, 1776. [Google Scholar] [CrossRef]
- Ying, H.; Xia, K.; Huang, X.; Feng, H.; Yang, Y.; Du, X.; Huang, L. Evaluation of water quality based on UAV images and the IMP-MPP algorithm. Ecol. Inform. 2021, 61, 101239. [Google Scholar] [CrossRef]
- Frouin, R.; Pelletier, B. Fields of non-linear regression models for atmospheric correction of satellite ocean-color imagery. Remote Sens. Environ. 2007, 111, 450–465. [Google Scholar] [CrossRef]
- Jia, J.; Chen, C.; Liu, Q.; Ding, B.; Ren, Z.; Jia, Y.; Bai, X.; Du, R.; Chen, Q.; Wang, S. Soil salinity monitoring model based on the synergistic construction of ground-UAV-satellite data. Soil Use Manag. 2024, 40, e12980. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Ma, L.; Liu, W. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Plants 2024, 13, 1006. [Google Scholar] [CrossRef] [PubMed]
- Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery. In Perspectives on Atmospheric Sciences; Springer: Cham, Switzerland, 2017; pp. 255–261. [Google Scholar]
- Lee, K.H.; Yum, J.M. A review on atmospheric correction technique using satellite remote sensing. Korean J. Remote Sens. 2019, 35, 1011–1030. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef]
- Mandanici, E.; Franci, F.; Bitelli, G.; Agapiou, A.; Alexakis, D.; Hadjimitsis, D.G. Comparison between empirical and physically based models of atmospheric correction. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 16–19 March 2015; pp. 110–119. [Google Scholar]
- Wei, J.; Yu, X.; Lee, Z.; Wang, M.; Jiang, L. Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters. Remote Sens. Environ. 2020, 250, 112029. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W. A simplified empirical line method of radiometric calibration for small unmanned aircraft systems-based remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- Shah, M.; Raval, M.S.; Divakaran, S. A deep learning perspective to atmospheric correction of satellite images. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 346–349. [Google Scholar]
- Acito, N.; Diani, M.; Corsini, G. CWV-Net: A deep neural network for atmospheric column water vapor retrieval from hyperspectral VNIR data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8163–8175. [Google Scholar] [CrossRef]
- Song, Z.; He, X.; Bai, Y.; Dong, X.; Wang, D.; Li, T.; Zhu, Q.; Gong, F. Atmospheric correction of absorbing aerosols for satellite ocean color remote sensing over coastal waters. Remote Sens. Environ. 2023, 290, 113552. [Google Scholar] [CrossRef]
- Duffy, K.; Vandal, T.J.; Wang, W.; Nemani, R.R.; Ganguly, A.R. A framework for deep learning emulation of numerical models with a case study in satellite remote sensing. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 3345–3356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ti, R.; Liu, Z.; Liu, X.; Yu, H.; Wei, Y.; Fan, Y.; Wang, Y.; Huang, H.; Sun, X. Enhancing aerosol vertical distribution retrieval with combined LSTM and Transformer model from OCO2 O2 A-band observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 9650–9665. [Google Scholar] [CrossRef]
- Cao, H.; Leng, H.; Zhao, J.; Xu, X.; Yang, J.; Li, B.; Zhou, Y.; Huang, L. Exploration of Deep-Learning-Based Error-Correction Methods for Meteorological Remote-Sensing Data: A Case Study of Atmospheric Motion Vectors. Remote Sens. 2024, 16, 3522. [Google Scholar] [CrossRef]
- Su, T.C. A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Román, A.; Tovar-Sánchez, A.; Gauci, A.; Deidun, A.; Caballero, I.; Colica, E.; D’Amico, S.; Navarro, G. Water-quality monitoring with a UAV-mounted multispectral camera in coastal waters. Remote Sens. 2022, 15, 237. [Google Scholar] [CrossRef]
- Inglada, J.; Muron, V.; Pichard, D.; Feuvrier, T. Analysis of artifacts in subpixel remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2006, 45, 254–264. [Google Scholar] [CrossRef]
- Dombi, J.; Dineva, A. Adaptive Savitzky-Golay filtering and its applications. Int. J. Adv. Intell. Paradig. 2020, 16, 145–156. [Google Scholar] [CrossRef]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]
- Ali, M.I.; Dirawan, G.D.; Hasim, A.H.; Abidin, M.R. Detection of changes in surface water bodies urban area with NDWI and MNDWI methods. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 946–951. [Google Scholar] [CrossRef]
- Pitarch, J.; Vanhellemont, Q. The QAA-RGB: A universal three-band absorption and backscattering retrieval algorithm for high resolution satellite sensors. Development and implementation in ACOLITE. Remote Sens. Environ. 2021, 265, 112667. [Google Scholar] [CrossRef]
- Qun’ou, J.; Lidan, X.; Siyang, S.; Meilin, W.; Huijie, X. Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms–A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar] [CrossRef]
- Cheng, K.H.; Chan, S.N.; Lee, J.H.W. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs). Mar. Pollut. Bull. 2020, 152, 110889. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. Atmos. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Kedzierski, M.; Wierzbicki, D.; Sekrecka, A.; Fryskowska, A.; Walczykowski, P.; Siewert, J. Influence of lower atmosphere on the radiometric quality of unmanned aerial vehicle imagery. Remote Sens. 2019, 11, 1214. [Google Scholar] [CrossRef]
- Acharya, B.S.; Bhandari, M.; Bandini, F.; Pizarro, A.; Perks, M.; Joshi, D.R.; Wang, S.; Dogwiler, T.; Ray, R.L.; Kharel, G. Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives. Water Resour. Res. 2021, 57, e2021WR029925. [Google Scholar] [CrossRef]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Huang, J.C.; Ko, K.M.; Shu, M.H.; Hsu, B.M. Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Comput. Appl. 2020, 32, 5461–5469. [Google Scholar] [CrossRef]
- Gross, L.; Thiria, S.; Frouin, R. Applying artificial neural network methodology to ocean color remote sensing. Ecol. Model. 1999, 120, 237–246. [Google Scholar] [CrossRef]
- Yu, G.; Zhong, Y.; Fu, D.; Chen, F.; Chen, C. Remote sensing estimation of δ15NPN in the Zhanjiang Bay using Sentinel-3 OLCI data based on machine learning algorithm. Front. Mar. Sci. 2024, 11, 1366987. [Google Scholar] [CrossRef]
- Luan, T.M.; Khatir, S.; Tran, M.T.; De Baets, B.; Cuong-Le, T. Exponential-trigonometric optimization algorithm for solving complicated engineering problems. Comput. Methods Appl. Mech. Eng. 2024, 432, 117411. [Google Scholar] [CrossRef]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2002; pp. 55–69. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Luo, J.; Qin, L.; Mao, P.; Xiong, Y.; Zhao, W.; Gao, H.; Qiu, G. Research progress in the retrieval algorithms for chlorophyll-a, a key element of water quality monitoring by remote sensing. Remote Sens. Technol. Appl. 2021, 36, 473–488. [Google Scholar]
- Cleveland, J.S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration. J. Geophys. Res. Ocean. 1995, 100, 13333–13344. [Google Scholar] [CrossRef]
- Lohrenz, S.E.; Weidemann, A.D.; Tuel, M. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. J. Plankton Res. 2003, 25, 35–61. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Wang, X.; Du, P.; Pan, C. A semi-analytical approach for estimating inland water inherent optical properties and chlorophyll a using airborne hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103774. [Google Scholar] [CrossRef]
- Cui, M. Introduction to the k-means clustering algorithm based on the elbow method. J. Account. Audit. Financ. 2020, 1, 5–8. [Google Scholar]
- Yu, X.; Liu, Q.; Liu, X.; Liu, X.; Wang, Y. A physical-based atmospheric correction algorithm of unmanned aerial vehicles images and its utility analysis. Int. J. Remote Sens. 2017, 38, 3101–3112. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Bernstein, L.S.; Acharya, P.K.; Dothe, H.; Matthew, M.W.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Richtsmeier, S.C.; Pukall, B. MODTRAN4 radiative transfer modeling for atmospheric correction. In Proceedings of the Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, Denver, CO, USA, 20 October 1999; pp. 348–353. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November 1995; pp. 1942–1948. [Google Scholar]
- Forrest, S. Genetic algorithms. ACM Comput. Surv. (CSUR) 1996, 28, 77–80. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Hong, S.M.; Morgan, B.J.; Stocker, M.D.; Smith, J.E.; Kim, M.S.; Cho, K.H.; Pachepsky, Y.A. Using machine learning models to estimate Escherichia coli concentration in an irrigation pond from water quality and drone-based RGB imagery data. Water Res. 2024, 260, 121861. [Google Scholar] [CrossRef]
- Parra, L.; Ahmad, A.; Sendra, S.; Lloret, J.; Lorenz, P. Combination of machine learning and RGB sensors to quantify and classify water turbidity. Chemosensors 2024, 12, 34. [Google Scholar] [CrossRef]
- Shiraishi, H. New index for estimation of chlorophyll-a concentration in water with RGB value. Int. J. Eng. Technol. 2018, 18, 10–16. [Google Scholar]
- Zhou, Y.; Li, W.; Cao, X.; He, B.; Feng, Q.; Yang, F.; Liu, H.; Kutser, T.; Xu, M.; Xiao, F. Spatial-temporal distribution of labeled set bias remote sensing estimation: An implication for supervised machine learning in water quality monitoring. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103959. [Google Scholar] [CrossRef]
Analytical Spectral Device | AWRMMS |
Manufacturer | TriOS (Made in Germany) |
Spectral Range | 320–946 nm |
Spectral Resolution | 1 nm |
Sampling Time | 10:00–13:00 (UTC+8) |
Sampling Depth | ≈1 m |
Angle between Telescopic Pole Orientation and Solar Incidence Plane | 135° |
Spectral Range (nm) | 450–998 | EFL (mm) | 16 |
Spectral Resolution (nm) | ≤8 | FOV (degree) | 23 |
Sampling Interval (nm) | 4 | Imaging Speed (Cubes·s−1) | 5 |
Spectral Trunnel | 138 | Imaging Size (px) | 103 × 103 |
Type | Combinatorial Formula | Representative Features | Correlation Abs Value |
---|---|---|---|
Double Bands | B1 − B5 | 0.67 | |
B2/B3 | 0.77 | ||
(B2 − B3)/(B2 + B3) | 0.80 | ||
Trible Bands | B2/(B2 − B3) | 0.56 | |
B3/(1/B2 − 1/B3) | 0.83 | ||
Quadruple Bands | (1/B5 − 1/B8A) | 0.63 |
Type | Inputs | Regression Model | Formula |
---|---|---|---|
combination features IOPs features | linear | ||
quadratic | |||
exponential function | |||
idempotent function | |||
combination features IOPs features | linear | ||
quadratic | |||
exponential function | |||
idempotent function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Cui, J.; Zhang, J.; Guo, J.; Xu, M.; Gao, W. “Ground–Aerial–Satellite” Atmospheric Correction Method Based on UAV Hyperspectral Data for Coastal Waters. Remote Sens. 2025, 17, 2768. https://doi.org/10.3390/rs17162768
Su X, Cui J, Zhang J, Guo J, Xu M, Gao W. “Ground–Aerial–Satellite” Atmospheric Correction Method Based on UAV Hyperspectral Data for Coastal Waters. Remote Sensing. 2025; 17(16):2768. https://doi.org/10.3390/rs17162768
Chicago/Turabian StyleSu, Xinyuan, Jianyong Cui, Jinying Zhang, Jie Guo, Mingming Xu, and Wenwen Gao. 2025. "“Ground–Aerial–Satellite” Atmospheric Correction Method Based on UAV Hyperspectral Data for Coastal Waters" Remote Sensing 17, no. 16: 2768. https://doi.org/10.3390/rs17162768
APA StyleSu, X., Cui, J., Zhang, J., Guo, J., Xu, M., & Gao, W. (2025). “Ground–Aerial–Satellite” Atmospheric Correction Method Based on UAV Hyperspectral Data for Coastal Waters. Remote Sensing, 17(16), 2768. https://doi.org/10.3390/rs17162768