Reconstruction of the Subsurface Temperature and Salinity in the South China Sea Using Deep-Learning Techniques with a Physical Guidance
Abstract
1. Introduction
2. Methods
2.1. Reconstruction Domain and Data
2.2. A Brief Introduction of the Widely Used Neural Networks and Their Parameter Settings in This Study
2.3. The Design of FFPG-Net
2.4. Geostrophic Current Calculation
2.5. Experimental Setup
3. Results
3.1. The Performance of Commonly Used Networks Without Physical Guidance
3.2. The Performance of the Various Networks with Physical Guidance
3.3. The Influence of Sea Surface Currents on the Reconstruction of Subsurface T/S Profiles
3.4. The Performance of FFPG-Net in the Reconstruction of Subsurface T/S Profiles in a Region of the SCS
3.5. The Application of FFPG-Net in the Reconstruction of Subsurface T/S Profiles Using Satellite-Derived Surface Data
4. Discussion
5. Conclusions
- Among the commonly used neural networks without physical guidance, i.e., ANN, RF, Transformer and CNN, CNN performs the best, with the vertically averaged RMSEs of temperature (salinity) being 0.82 °C (0.28 psu) and 0.61 °C (0.24 psu) in winter and summer, respectively.
- The combination of CNN with physical guidance through a vertical EOF decomposition can improve the performance of CNN, with a reduction in the vertically averaged RMSEs of the reconstructed temperature (salinity) by about 7.3% (64%) and 9.8% (54%) in winter and summer, respectively.
- The proposed network (FFPG-net), characterized by feature fusion with physical guidance, achieves further improvements of about 59% (40%) and 36% (36%) in winter and summer for the reconstruction of temperature (salinity) profiles.
- Adding the surface currents as input variables, in addition to SST, SSS and SSH, for the network can significantly improve the performance of FFPG-net by about 29.38% (26.36%) and 13.62% (15.21%) in winter and summer for the reconstructed T (S) profiles, and the SSH-derived geostrophic surface currents can play a similar or even better role than the full surface currents, which makes the application of FFPG-net in real situations more feasible and practical.
- The preliminary application of FFPG-net in reconstructing subsurface T/S profiles in the SCS using satellite-derived sea surface observations indicates that FFPG-net outperforms the MODAS with an approximately 55% reduction in vertically averaged temperature RMSEs when adding the geostrophic currents into the input variables. The reconstructed salinity profiles from FFPG-net, however, are not fully satisfactory, with somewhat larger biases than those from the MODAS. These results suggest that FFPG-net is reliable and feasible in the reconstruction of subsurface temperature profiles in real situations, with the reconstruction of subsurface salinity profiles remaining a big challenge that demands great efforts in the future.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyer, T.; Domingues, C.M.; Good, S.A.; Johnson, G.C.; Lyman, J.M.; Ishii, M.; Gouretski, V.; Willis, J.K.; Antonov, J.; Wijffels, S.; et al. Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping Methods, XBT Bias Corrections, and Baseline Climatologies. J. Clim. 2016, 29, 4817–4842. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Zhu, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; et al. Record-Setting Ocean Warmth Continued in 2019. Adv. Atmos. Sci. 2020, 37, 137–142. [Google Scholar] [CrossRef]
- Izumi, T.; Amagasaki, M.; Ishida, K.; Kiyama, M. Super-resolution of sea surface temperature with convolutional neural network- and generative adversarial network-based methods. J. Water Clim. Change 2022, 13, 1673–1683. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.J.; Im, J.; Park, Y.G.; Sung, T. Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sens. Environ. 2022, 273, 15. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Stanev, E.V.; Grayek, S. Reconstruction of the Basin-Wide Sea-Level Variability in the North Sea Using Coastal Data and Generative Adversarial Networks. J. Geophys. Res. Ocean. 2020, 125, 22. [Google Scholar] [CrossRef]
- Moschos, E.; Schwander, O.; Stegner, A.; Gallinari, P. Deep-Sst-Eddies: A Deep Learning Framework to Detect Oceanic Eddies in Sea Surface Temperature Images. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New York, NY, USA, 2020; pp. 4307–4311. [Google Scholar]
- Zhang, R.-H.; Zhou, L.; Gao, C.; Tao, L. A transformer-based coupled ocean-atmosphere model for ENSO studies. Sci. Bull. 2024, 69, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.I.C.; Jiangz, H.X. Uncertainties of the Ocean Heat Content Estimation Induced by Insufficient Vertical Resolution of Historical Ocean Subsurface Observations. J. Atmos. Ocean. Technol. 2014, 31, 1383–1396. [Google Scholar]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Oceans 2004, 31, 339. [Google Scholar] [CrossRef]
- LaCasce, J.H.; Wang, J. Estimating Subsurface Velocities from Surface Fields with Idealized Stratification. J. Phys. Oceanogr. 2015, 45, 2424–2435. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.-H.; Kidwell, A. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Lapeyre, G.; Klein, P.; Chapron, B.; Hecht, M.W. Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Zhang, R.; Chen, J.; Bao, S.; Wang, G. A Dynamical-Statistical Approach to Retrieve the Ocean Interior Structure from Surface Data: SQG-mEOF-R. J. Geophys. Res. Ocean. 2020, 125, e2019JC015840. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.-K. Global-mean surface temperature variability: Space–time perspective from rotated EOFs. Clim. Dyn. 2018, 51, 1719–1732. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Santoleri, R. Methods for the Reconstruction of Vertical Profiles from Surface Data: Multivariate Analyses, Residual GEM, and Variable Temporal Signals in the North Pacific Ocean. J. Atmos. Ocean. Technol. 2005, 22, 1763–1781. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R. A deep learning-based U-Net model for ENSO-related precipitation responses to sea surface temperature anomalies over the tropical Pacific. Atmos. Ocean. Sci. Lett. 2023, 16, 100351. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, R.-H. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions. Sci. Adv. 2023, 9, eadf2827. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, R.H. The 3D-Geoformer for ENSO studies: A Transformer-based model with integrated gradient methods for enhanced explainability. J. Oceanol. Limnol. 2025. [Google Scholar] [CrossRef]
- Ballabrera-Poy, J.; Mourre, B.; Garcia-Ladona, E.; Turiel, A.; Font, J. Linear and non-linear T–S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1605–1614. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.H.; Jo, Y.H.; Liu, W.T.; Technology, O. Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network. J. Atmos. Ocean. Technol. 2012, 29, 1675–1688. [Google Scholar] [CrossRef]
- Su, H.; Yang, X.; Lu, W.; Yan, X.-H. Estimating Subsurface Thermohaline Structure of the Global Ocean Using Surface Remote Sensing Observations. Remote Sens. 2019, 11, 1598. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, X.; Guo, D.; Li, S.; Liu, S.; Xu, C. Ocean Temperature Prediction Based on Stereo Spatial and Temporal 4-D Convolution Model. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1003405. [Google Scholar] [CrossRef]
- Zhang, K.; Geng, X.; Yan, X.H. Prediction of 3-D Ocean Temperature by Multilayer Convolutional LSTM. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1303–1307. [Google Scholar] [CrossRef]
- Han, M.; Feng, Y.; Zhao, X.; Sun, C.; Hong, F.; Liu, C. A Convolutional Neural Network Using Surface Data to Predict Subsurface Temperatures in the Pacific Ocean. IEEE Access 2019, 7, 172816–172829. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, L.; Li, J. Neural Network Approach to Retrieving Ocean Subsurface Temperatures from Surface Parameters Observed by Satellites. Water 2021, 13, 388. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.-H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Halkides, D.; Lee, T.; Kida, S. Mechanisms controlling the seasonal mixed-layer temperature and salinity of the Indonesian seas. Ocean. Dyn. 2011, 61, 481–495. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water 2017, 9, 936. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Peng, S.; Qi, Z. The inter-annual variations of the significant wave height in the Western North Pacific and South China Sea region. Clim. Dyn. 2021, 56, 3065–3080. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, S.; Li, Z.; Qi, Y.; Chen, R. A reanalysis dataset of the South China Sea. Sci. Data 2014, 1, 140052. [Google Scholar] [CrossRef]
- Peng, S.Q.; Zeng, X.Z.; Li, Z.J. A three-dimensional variational data assimilation system for the South China Sea: Preliminary results from observing system simulation experiments. Ocean. Dyn. 2016, 66, 737–750. [Google Scholar] [CrossRef]
- Aparna, S.G.; D’Souza, S.; Arjun, N.B. Prediction of daily sea surface temperature using artificial neural networks. Int. J. Remote Sens. 2018, 39, 4214–4231. [Google Scholar] [CrossRef]
- Robertson, B.; Gharabaghi, B.; Hall, K. Prediction of Incipient Breaking Wave-Heights Using Artificial Neural Networks and Empirical Relationships. Coast. Eng. J. 2015, 57, 1550018. [Google Scholar] [CrossRef]
- Wang, H.Y.; Song, T.Q.; Zhu, S.L.; Yang, S.G.; Feng, L.Q. Subsurface Temperature Estimation from Sea Surface Data Using Neural Network Models in the Western Pacific Ocean. Mathematics 2021, 9, 852. [Google Scholar] [CrossRef]
- Su, H.; Li, W.; Yan, X.-H. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean from Satellite Observations. JGR Ocean. 2018, 123, 399–410. [Google Scholar] [CrossRef]
Set 1 | Set 2 | ||
---|---|---|---|
Experiments | Input Variables | Experiments | Input Variables |
S1-RF | S, T and H | S2-CNN-PG | S, T and H |
S1-ANN | S, T and H | S2-FFPG-net | S, T and H |
S1-CNN | S, T and H | S2-FFPG-net-ucvc | S, T, H + uc and vc |
S1-Transformer | S, T and H | S2-FFPG-net-ugvg | S, T, H + ug and vg |
Month | S1-RF | S1-ANN | S1-CNN | S1-Transformer | |
---|---|---|---|---|---|
Temperature (°C) | Jan. | 0.88 | 0.94 | 0.82 | 0.97 |
Jul. | 0.80 | 0.81 | 0.61 | 0.83 | |
Salinity (psu) | Jan. | 0.31 | 0.30 | 0.28 | 0.39 |
Jul. | 0.31 | 0.34 | 0.24 | 0.30 |
Month | S1-CNN | S2-CNN-PG | S2-FFPG-Net | |
---|---|---|---|---|
Temperature (°C) | Jan. | 0.82 | 0.76 | 0.31 |
Jul. | 0.61 | 0.55 | 0.35 | |
Salinity (psu) | Jan. | 0.28 | 0.10 | 0.06 |
Jul. | 0.24 | 0.11 | 0.07 |
Month | S2-FFPG-Net | S2-FFPG-Net-ucvc | S2-FFPG-Net-ugvg | |
---|---|---|---|---|
Temperature (°C) | Jan. | 0.31 | 0.23 | 0.20 |
Jul. | 0.35 | 0.22 | 0.21 | |
Salinity (psu) | Jan. | 0.06 | 0.057 | 0.053 |
Jul. | 0.07 | 0.055 | 0.055 |
Month | S1-CNN | S2-FFPG-Net | S2-FFPG-Net-ucvc | S2-FFPG-Net-ugvg | |
---|---|---|---|---|---|
Temperature (°C) | Jan. | 0.67 | 0.16 | 0.11 | 0.11 |
Jul. | 0.63 | 0.22 | 0.19 | 0.14 | |
Salinity (psu) | Jan. | 0.47 | 0.033 | 0.024 | 0.024 |
Jul. | 0.46 | 0.046 | 0.039 | 0.031 |
Time | Locations | Variables | S2-FFPG-Net | S2-FFPG-Net-ucvc | S2-FFPG-Net-ugvg | MODAS |
---|---|---|---|---|---|---|
Jan. | point1 | temperature | 0.50 | 0.50 | 0.40 | 0.89 |
salinity | 0.22 | 0.12 | 0.14 | 0.08 | ||
point2 | temperature | 0.82 | 0.43 | 0.63 | 1.40 | |
salinity | 0.42 | 0.50 | 0.41 | 0.39 | ||
Jul. | point1 | temperature | 0.74 | 0.58 | 0.52 | 1.23 |
salinity | 0.27 | 0.18 | 0.14 | 0.12 | ||
point2 | temperature | 0.65 | 0.48 | 0.45 | 1.04 | |
salinity | 0.45 | 0.28 | 0.31 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Li, S.; Cai, Y.; Zhong, G.; Peng, S. Reconstruction of the Subsurface Temperature and Salinity in the South China Sea Using Deep-Learning Techniques with a Physical Guidance. Remote Sens. 2025, 17, 2954. https://doi.org/10.3390/rs17172954
Zhao Q, Li S, Cai Y, Zhong G, Peng S. Reconstruction of the Subsurface Temperature and Salinity in the South China Sea Using Deep-Learning Techniques with a Physical Guidance. Remote Sensing. 2025; 17(17):2954. https://doi.org/10.3390/rs17172954
Chicago/Turabian StyleZhao, Qianlong, Shaotian Li, Yuting Cai, Guoqiang Zhong, and Shiqiu Peng. 2025. "Reconstruction of the Subsurface Temperature and Salinity in the South China Sea Using Deep-Learning Techniques with a Physical Guidance" Remote Sensing 17, no. 17: 2954. https://doi.org/10.3390/rs17172954
APA StyleZhao, Q., Li, S., Cai, Y., Zhong, G., & Peng, S. (2025). Reconstruction of the Subsurface Temperature and Salinity in the South China Sea Using Deep-Learning Techniques with a Physical Guidance. Remote Sensing, 17(17), 2954. https://doi.org/10.3390/rs17172954