Characterizing Role of Spatial Features in Improving Mangrove Classification—A Case Study over the Mesoamerican Reef Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Machine Learning Model Development
2.2.1. Generation of Calibration Dataset
2.2.2. Feature Sets for Model Development
Feature Set | Source | Key Characteristics/Processing | References |
---|---|---|---|
Non-spatial | Sentinel-2 surface reflectance bands (Level-2A) (blue, green, red, rededge-1, rededge-2, rededge-3, NIR, rededge-4, SWIR-1, SWIR-2) GEE collection: COPERNICUS/S2_SR_HARMONIZED | Median composite calculated with all scenes captured from January to June of 2019 and 2020 and having less than 30% cloud cover. Spatial resolution: 10 m | Bunting et al. [11,12] Cissell et al. [46] ESA, Copernicus [61,62] Hu et al. [63] Yancho et al. [14] |
Normalized Difference Vegetation Index (NDVI), Red-Edge Chlorophyll Index (CLrededge), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI) | 80th and 20th percentiles composite calculated over January to June of 2019 and 2020. Spatial resolution: 10 m | ||
Sentinel-1 VH and VV backscatter GEE collection: COPERNICUS/S1_GRD | Median composite calculated over January to June of 2019 and 2020, and with all scenes captured in ascending orbit and interferometric mode. Noisy pixels (backscatter < −30 dB) were removed. Spatial resolution: 10 m | ||
Spatial-1 | All features in non-spatial set | ||
Latitude and Longitude for pixel center | Farr et al. [65] Bunting et al. [11,12] Cissell et al. [46] NASA, USGS, JPL Caltech [66] | ||
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) GEE collection: Version 3 | Original ~30 m resolution data resampled to 10 m. | ||
Spatial-2 | All features in non-spatial set + DEM | ||
Distance to Coast (CoastD) Coastline defined by GSHHG (Version 2.3.7 Full Resolution, Level 1) | Bi-directional Euclidean distance in m from the coastline. Spatial resolution: 100 m, resampled to 10 m. | Wessel and Smith [56] | |
Distance to Streams (StreamD) Streams defined by WWF Free Flowing Rivers | Bi-directional Euclidean distance in m from streams (river order 6 or lower). Spatial resolution: 100 m, resampled to 10 m. | Grill et al. [67] | |
Storm frequency (Storms) Storm track line data from IBTrACS | Number of occurrences of cyclones between 1990 and 2016 recorded as density of storm track lines per km. Spatial resolution: 1 km, resampled to 10 m. | Knapp et al. [68] | |
Spatial-3 | All features in non-spatial set | ||
Difference between IDW interpolated surface and actual median surface reflectance for Sentinel-2 bands. These features were named with ‘Dif’ appended to the band name (e.g., BlueDif, GreenDif). | IDW interpolation was obtained at 100 spatial resolution, resampled to 10 m. | Johnson et al. [36,69] |
2.2.3. Spatial Cross-Validation Strategy for Model Calibration
2.3. Map Accuracy Assessment
2.4. Effect of Data Scarsity on Map Accuracies
3. Results
3.1. Model and Map Accuracy Assessment
3.2. Feature Importance
3.3. Effect of Data-Size on Map Accuracies
3.4. Comparing Spatial Feature Output Maps with Non-Spatial Feature Output
3.5. Spatial Autocorrelation in Spectral Data and Model Errors
4. Discussion
4.1. Role of Spatial Features in Improving Classifications
4.2. Nature of Modifications in the Mangrove Map with Additional Spatial Features
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Carrasquilla-Henao, M.; Juanes, F. Mangroves Enhance Local Fisheries Catches: A Global Meta-Analysis. Fish Fish. 2017, 18, 79–93. [Google Scholar] [CrossRef]
- Himes-Cornell, A.; Grose, S.O.; Pendleton, L. Mangrove Ecosystem Service Values and Methodological Approaches to Valuation: Where Do We Stand? Front. Mar. Sci. 2018, 5, 376. [Google Scholar] [CrossRef]
- Bimrah, K.; Dasgupta, R.; Hashimoto, S.; Saizen, I.; Dhyani, S. Ecosystem Services of Mangroves: A Systematic Review and Synthesis of Contemporary Scientific Literature. Sustainability 2022, 14, 12051. [Google Scholar] [CrossRef]
- Owuor, M.; Santos, T.M.T.; Otieno, P.; Mazzuco, A.C.A.; Iheaturu, C.; Bernardino, A.F. Flow of Mangrove Ecosystem Services to Coastal Communities in the Brazilian Amazon. Front. Environ. Sci. 2024, 12, 1329006. [Google Scholar] [CrossRef]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Golebie, E.J.; Aczel, M.; Bukoski, J.J.; Chau, S.; Ramirez-Bullon, N.; Gong, M.; Teller, N. A Qualitative Systematic Review of Governance Principles for Mangrove Conservation. Conserv. Biol. 2022, 36, e13850. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping Mangrove Extent and Change: A Globally Applicable Approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sens. 2022, 14, 1034. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A Review of Remote Sensing for Mangrove Forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Yancho, J.M.M.; Jones, T.G.; Gandhi, S.R.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Acosta-Velázquez, J.; Ochoa-Gómez, J.; Vázquez-Lule, A.; Guevara, M. Changes in Mangrove Coverage Classification Criteria Could Impact the Conservation of Mangroves in Mexico. Land Use Policy 2023, 129, 106651. [Google Scholar] [CrossRef]
- Chen, C.-F.; Son, N.-T.; Chang, N.-B.; Chen, C.-R.; Chang, L.-Y.; Valdez, M.; Centeno, G.; Thompson, C.A.; Aceituno, J.L. Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model. Remote Sens. 2013, 5, 6408–6426. [Google Scholar] [CrossRef]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Alam, I.; Phillips, C.; Ticehurst, C.; Held, A. Mapping the Multi-Decadal Mangrove Dynamics of the Australian Coastline. Remote Sens. Environ. 2020, 238, 111185. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote Sensing Techniques: Mapping and Monitoring of Mangrove Ecosystem—A Review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Thakur, S.; Mondal, I.; Ghosh, P.B.; Das, P.; De, T.K. A Review of the Application of Multispectral Remote Sensing in the Study of Mangrove Ecosystems with Special Emphasis on Image Processing Techniques. Spat. Inf. Res. 2020, 28, 39–51. [Google Scholar] [CrossRef]
- Li, L. Geographically Weighted Machine Learning and Downscaling for High-Resolution Spatiotemporal Estimations of Wind Speed. Remote Sens. 2019, 11, 1378. [Google Scholar] [CrossRef]
- Liu, X.; Kounadi, O.; Zurita-Milla, R. Incorporating Spatial Autocorrelation in Machine Learning Models Using Spatial Lag and Eigenvector Spatial Filtering Features. ISPRS Int. J. Geo-Inf. 2022, 11, 242. [Google Scholar] [CrossRef]
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwick, K.D. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE 2014, 9, e85993. [Google Scholar] [CrossRef] [PubMed]
- McMahon, C.A.; Roberts, D.A.; Stella, J.C.; Trugman, A.T.; Singer, M.B.; Caylor, K.K. A River Runs through It: Robust Automated Mapping of Riparian Woodlands and Land Surface Phenology across Dryland Regions. Remote Sens. Environ. 2024, 305, 114056. [Google Scholar] [CrossRef]
- Atkinson, P.M. Spatially Weighted Supervised Classification for Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 277–291. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Assessment of Multi-Wavelength SAR and Multispectral Instrument Data for Forest Aboveground Biomass Mapping Using Random Forest Kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Dobbertin, M.; Biging, G.S. A Simulation Study of the Effect of Scene Autocorrelation, Training Sample Size and Sampling Method on Classification Accuracy. Can. J. Remote Sens. 1996, 22, 360–367. [Google Scholar] [CrossRef]
- Ayala-Izurieta, J.E.; Márquez, C.O.; García, V.J.; Recalde-Moreno, C.G.; Rodríguez-Llerena, M.V.; Damián-Carrión, D.A. Land Cover Classification in an Ecuadorian Mountain Geosystem Using a Random Forest Classifier, Spectral Vegetation Indices, and Ancillary Geographic Data. Geosciences 2017, 7, 34. [Google Scholar] [CrossRef]
- Kwong, I.H.Y.; Wong, F.K.K.; Fung, T.; Liu, E.K.Y.; Lee, R.H.; Ng, T.P.T. A Multi-Stage Approach Combining Very High-Resolution Satellite Image, GIS Database and Post-Classification Modification Rules for Habitat Mapping in Hong Kong. Remote Sens. 2022, 14, 67. [Google Scholar] [CrossRef]
- Maselli, F.; Rodolfi, A.; Bottai, L.; Romanelli, S.; Conese, C. Classification of Mediterranean Vegetation by TM and Ancillary Data for the Evaluation of Fire Risk. Int. J. Remote Sens. 2000, 21, 3303–3313. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Hurford, C.; Lucas, R.M.; Planque, C.; Chognard, S. Hierarchical-Modular Framework for Habitat Mapping through Systematic and Informed Integration of Remote Sensing Data with Contextual Information. Ecol. Inform. 2024, 82, 102714. [Google Scholar] [CrossRef]
- Selvaraj, J.J.; Gallego Pérez, B.E. Estimating Mangrove Aboveground Biomass in the Colombian Pacific Coast: A Multisensor and Machine Learning Approach. Heliyon 2023, 9, e20745. [Google Scholar] [CrossRef]
- Griffith, D. What Is Spatial Autocorrelation? Reflections on the Past 25 Years of Spatial Statistics. L’Espace Géograph. 1992, 21, 265–280. [Google Scholar] [CrossRef]
- Griffith, D.A.; Chun, Y. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data. Remote Sens. 2016, 8, 535. [Google Scholar] [CrossRef]
- Nikparvar, B.; Thill, J.-C. Machine Learning of Spatial Data. ISPRS Int. J. Geo-Inf. 2021, 10, 600. [Google Scholar] [CrossRef]
- Johnson, B.; Tateishi, R.; Xie, Z. Using Geographically Weighted Variables for Image Classification. Remote Sens. Lett. 2012, 3, 491–499. [Google Scholar] [CrossRef]
- Campbell, J.B. Spatial Correlation Effects upon Accuracy of Supervised Classification of Land Cover. Photogramm. Eng. Remote Sens. 1981, 47, 355–363. [Google Scholar]
- Alongi, D.M. Mangrove Forests: Resilience, Protection from Tsunamis, and Responses to Global Climate Change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Alongi, D.M. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef]
- MacKenzie, R.; Sharma, S.; Rovai, A.R. Chapter 12—Environmental Drivers of Blue Carbon Burial and Soil Carbon Stocks in Mangrove Forests. In Dynamic Sedimentary Environments of Mangrove Coasts; Sidik, F., Friess, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 275–294. ISBN 978-0-12-816437-2. [Google Scholar]
- Kamal, M.; Phinn, S.; Johansen, K. Characterizing the Spatial Structure of Mangrove Features for Optimizing Image-Based Mangrove Mapping. Remote Sens. 2014, 6, 984–1006. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, O.J.; Xu, H. A Comparison of Species Composition and Stand Structure between Planted and Natural Mangrove Forests in Shenzhen Bay, South China. J. Plant Ecol. 2010, 3, 165–174. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Castañeda-Moya, E.; Cook, B.D.; Montesano, P.M.; Neigh, C.S.R.; Corp, L.A.; Ott, L.E.; Chavez, S.; Morton, D.C. Storm Surge and Ponding Explain Mangrove Dieback in Southwest Florida Following Hurricane Irma. Nat. Commun. 2021, 12, 4003. [Google Scholar] [CrossRef]
- Simpson, L.T.; Canty, S.W.J.; Cissell, J.R.; Steinberg, M.K.; Cherry, J.A.; Feller, I.C. Bird Rookery Nutrient Over-Enrichment as a Potential Accelerant of Mangrove Cay Decline in Belize. Oecologia 2021, 197, 771–784. [Google Scholar] [CrossRef]
- Amaral, C.; Poulter, B.; Lagomasino, D.; Fatoyinbo, T.; Taillie, P.; Lizcano, G.; Canty, S.; Silveira, J.A.H.; Teutli-Hernández, C.; Cifuentes-Jara, M.; et al. Drivers of Mangrove Vulnerability and Resilience to Tropical Cyclones in the North Atlantic Basin. Sci. Total Environ. 2023, 898, 165413. [Google Scholar] [CrossRef] [PubMed]
- Cissell, J.R.; Canty, S.W.J.; Steinberg, M.K.; Simpson, L.T. Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery. Appl. Sci. 2021, 11, 4258. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of Spatial Predictor Variable Selection in Machine Learning Applications—Moving from Data Reproduction to Spatial Prediction. Ecol. Model. 2019, 411, 108815. [Google Scholar] [CrossRef]
- Meyer, H.; Pebesma, E. Predicting into Unknown Space? Estimating the Area of Applicability of Spatial Prediction Models. Methods Ecol. Evol. 2021, 12, 1620–1633. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gress, E.; Voss, J.D.; Eckert, R.J.; Rowlands, G.; Andradi-Brown, D.A. The Mesoamerican Reef. In Mesophotic Coral Ecosystems; Loya, Y., Puglise, K.A., Bridge, T.C.L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 71–84. ISBN 978-3-319-92735-0. [Google Scholar]
- Wilson, R.; Burke, L.; Lambert, L.J. A Situational Analysis of Mangroves in the Mesoamerican Reef System; Seatone Consulting: Larkspur, CA, USA; WRI: Washington, DC, USA, 2015; pp. 1–27. [Google Scholar]
- Arreola, A.; Eugenia, M. The Mesoamerican Barrier Reef System. In Marine Transboundary Conservation and Protected Areas; Routledge: Abingdon, UK, 2016; ISBN 978-1-315-72427-0. [Google Scholar]
- Canty, S.W.J.; Preziosi, R.F.; Rowntree, J.K. Dichotomy of Mangrove Management: A Review of Research and Policy in the Mesoamerican Reef Region. Ocean Coast. Manag. 2018, 157, 40–49. [Google Scholar] [CrossRef]
- Bing Maps. Microsoft Corporation. 2024. Available online: https://www.bing.com/maps (accessed on 31 January 2024).
- Rivas, A.B.; González, C.; Canty, S.; Rodríguez Olivet, C.; Flamenco, X.; González, M.J.; Escobedo, M. Regional Strategy for Mangrove Management, Conservation, Restoration and Monitoring in the Mesoamerican Reef 2020–2025; Mesoamerican Reef Fund: Guatemala City, Guatemala, 2020. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. A Global, Self-Consistent, Hierarchical, High-Resolution Shoreline Database. J. Geophys. Res. Solid Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the Robustness of Random Forests to Map Land Cover with High Resolution Satellite Image Time Series over Large Areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Morrissette, H.K.; Baez, S.K.; Beers, L.; Bood, N.; Martinez, N.D.; Novelo, K.; Andrews, G.; Balan, L.; Beers, C.S.; Betancourt, S.A.; et al. Belize Blue Carbon: Establishing a National Carbon Stock Estimate for Mangrove Ecosystems. Sci. Total Environ. 2023, 870, 161829. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency. Copernicus Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Google Earth Engine. 2015. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 (accessed on 1 October 2024).
- European Space Agency. Copernicus Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling. 2014. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 1 October 2024).
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural Characterisation of Mangrove Forests Achieved through Combining Multiple Sources of Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- NASA Shuttle Radar Topography Mission Global 1 arc Second. NASA EOSDIS Land Processes DAAC. Google Earth Engine. Available online: https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 (accessed on 1 October 2024).
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Johnson, B.; Tateishi, R.; Kobayashi, T. Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers. Remote Sens. 2012, 4, 2619–2634. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Viscarra Rossel, R.A.; Gries, P.; Scholten, T.; MacMillan, R.A. Spatial Modelling with Euclidean Distance Fields and Machine Learning. Eur. J. Soil Sci. 2018, 69, 757–770. [Google Scholar] [CrossRef]
- Hidayah, Z.; Utama, R.Y.S.; As-Syakur, A.R.; Rachman, H.A.; Wiyanto, D.B. Mapping Mangrove above Ground Carbon Stock of Benoa Bay Bali Using Sentinel-1 Satellite Imagery. IOP Conf. Ser. Earth Environ. Sci. 2024, 1298, 012013. [Google Scholar] [CrossRef]
- Llano, X. SMByC-IDEAM. AcATaMa—QGIS Plugin for Accuracy Assessment of Thematic Maps, Version 24.6. 2024. Available online: https://github.com/SMByC/AcATaMa (accessed on 1 October 2024).
- QGIS. Association QGIS Geographic Information System. 2024. Available online: https://qgis.org/ (accessed on 1 October 2024).
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- BjØrnstad, O.N.; Falck, W. Nonparametric Spatial Covariance Functions: Estimation and Testing. Environ. Ecol. Stat. 2001, 8, 53–70. [Google Scholar] [CrossRef]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Society. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Rasquinha, D.N.; Mishra, D.R. Tropical Cyclones Shape Mangrove Productivity Gradients in the Indian Subcontinent. Sci. Rep. 2021, 11, 17355. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Yao, Q.; de Souza, A.V.; Liu, K.; Pessenda, L.C.R. Hurricanes Are Limiting the Mangrove Canopy Heights in the Gulf of Mexico. Sci. Total Environ. 2024, 927, 172284. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Heuvelink, G.B.M.; de Bruin, S.; Brus, D.J. Spatial Cross-Validation Is Not the Right Way to Evaluate Map Accuracy. Ecol. Model. 2021, 457, 109692. [Google Scholar] [CrossRef]
- Yıldırım, I.; Ersoy, O.K.; Yazgan, B. Improvement of Classification Accuracy in Remote Sensing Using Morphological Filter. Adv. Space Res. 2005, 36, 1003–1006. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D. The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1155–1162. [Google Scholar]
Feature Set | Model Calibration Accuracies (%) from Spatial Cross-Validation Strategy | Map Validation Accuracies (%) | ||||
---|---|---|---|---|---|---|
OA | OM | COM | OA | OM | COM | |
Non-spatial | 94 | 5 | 7 | 97 | 7 | 3 |
Spatial-1 | 96 | 4 | 5 | 98 | 3 | 3 |
Spatial-2 | 95 | 5 | 6 | 97 | 5 | 3 |
Spatial-3 | 98 | 1 | 3 | 94 | 17 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punalekar, S.M.; Nowakowski, A.J.; Canty, S.W.J.; Fergus, C.; Huang, Q.; Songer, M.; Connette, G.M. Characterizing Role of Spatial Features in Improving Mangrove Classification—A Case Study over the Mesoamerican Reef Region. Remote Sens. 2025, 17, 2837. https://doi.org/10.3390/rs17162837
Punalekar SM, Nowakowski AJ, Canty SWJ, Fergus C, Huang Q, Songer M, Connette GM. Characterizing Role of Spatial Features in Improving Mangrove Classification—A Case Study over the Mesoamerican Reef Region. Remote Sensing. 2025; 17(16):2837. https://doi.org/10.3390/rs17162837
Chicago/Turabian StylePunalekar, Suvarna M., A. Justin Nowakowski, Steven W. J. Canty, Craig Fergus, Qiongyu Huang, Melissa Songer, and Grant M. Connette. 2025. "Characterizing Role of Spatial Features in Improving Mangrove Classification—A Case Study over the Mesoamerican Reef Region" Remote Sensing 17, no. 16: 2837. https://doi.org/10.3390/rs17162837
APA StylePunalekar, S. M., Nowakowski, A. J., Canty, S. W. J., Fergus, C., Huang, Q., Songer, M., & Connette, G. M. (2025). Characterizing Role of Spatial Features in Improving Mangrove Classification—A Case Study over the Mesoamerican Reef Region. Remote Sensing, 17(16), 2837. https://doi.org/10.3390/rs17162837