Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Data
2.2.1. Remote Sensing Data
2.2.2. Climate Data
2.2.3. GPP Products
2.2.4. Other Data
2.3. Multi-Source Remote Sensing Fusion
2.4. GPP Estimation and Validation
2.4.1. Carnegie–Ames–Stanford Approach (CASA) Model
2.4.2. Cross-Validation
2.5. Spatiotemporal Variation Response Analysis Method
2.5.1. GPP Trend Analysis
2.5.2. Climate Factor Response Analysis
3. Results
3.1. Cross-Validation
3.2. Spatial Distribution Characteristics of GPP
3.2.1. Overall Spatial Distribution
3.2.2. Distribution of GPP with Elevation
3.3. Temporal Distribution of GPP
3.3.1. Overall Temporal Variation in GPP
3.3.2. GPP Variation Trends
3.3.3. Future GPP Trend Prediction
3.4. Climate Factor Response Analysis
3.4.1. Comparison of the Climatic Factor Correlations Across Different Scales
3.4.2. Interannual Variations in Climatic Factor Correlations
3.4.3. Intra-Annual Variations in Climate Factor Correlations
4. Discussion
4.1. Novelty of the Work
4.2. Analysis of Results
4.3. Shortcomings of the Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 2015, 10, 054019. [Google Scholar] [CrossRef]
- Simonich, S.L.; Hites, R.A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 1994, 370, 49–51. [Google Scholar] [CrossRef]
- Scheffer, M.; Holmgren, M.; Brovkin, V.; Claussen, M. Synergy between small-and large-scale feedbacks of vegetation on the water cycle. Glob. Change Biol. 2005, 11, 1003–1012. [Google Scholar] [CrossRef]
- Ashton-Butt, A.; Aryawan, A.A.; Hood, A.S.; Naim, M.; Purnomo, D.; Suhardi; Wahyuningsih, R.; Willcock, S.; Poppy, G.M.; Caliman, J.P. Understory vegetation in oil palm plantations benefits soil biodiversity and decomposition rates. Front. For. Glob. Change 2018, 1, 10. [Google Scholar] [CrossRef]
- Houghton, R.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosci. 2009, 114, G00E03. [Google Scholar] [CrossRef]
- Mitchard, E.T. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef]
- Friedlingstein, P. Carbon cycle feedbacks and future climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140421. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Lu, Y. Climate and vegetation drivers of terrestrial carbon fluxes: A global data synthesis. Adv. Atmos. Sci. 2019, 36, 679–696. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. In MOD17 User’s Guide; MODIS Land Team: Greenbelt, MD, USA, 2015; pp. 1–28. [Google Scholar]
- Sun, Z.; Wang, X.; Zhang, X.; Tani, H.; Guo, E.; Yin, S.; Zhang, T. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 2019, 668, 696–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Q.; Wang, H.S.; Sun, O.J. Application and comparison of remote sensing GPP models with multi-site data in China. Chin. J. Plant Ecol. 2017, 41, 337–347. [Google Scholar] [CrossRef]
- Running, S.W.; Hunt, E.R. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Physiol. Process. Leaf Globe 1993, 141, 158. [Google Scholar]
- Pei, Y.; Dong, J.; Zhang, Y.; Yuan, W.; Doughty, R.; Yang, J.; Zhou, D.; Zhang, L.; Xiao, X. Evolution of light use efficiency models: Improvement, uncertainties, and implications. Agric. For. Meteorol. 2022, 317, 108905. [Google Scholar] [CrossRef]
- Lees, K.J.; Khomik, M.; Quaife, T.; Clark, J.M.; Hill, T.; Klein, D.; Ritson, J.; Artz, R.R. Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale. Sci. Total Environ. 2021, 766, 142613. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Sci. Total Environ. 2021, 783, 146965. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, J.; Yang, X.; Wu, Y.; Zhang, Z.; Wang, S.; Wang, H.; Zhang, Y. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 2020, 236, 111420. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, W.; Yin, G.; Fu, H.; Wang, X. Divergent ecological restoration driven by afforestation along the North and south banks of the Yarlung Zangbo middle reach. Land Degrad. Dev. 2025, 36, 521–532. [Google Scholar] [CrossRef]
- Fang, J.Y.; Ohsawa, M.; Kira, T. Vertical vegetation zones along 30 N latitude in humid East Asia. Vegetatio 1996, 126, 135–149. [Google Scholar] [CrossRef]
- Xie, X.; Tian, J.; Wu, C.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Nan, X.; Jin, Y. Long-term topographic effect on remotely sensed vegetation index-based gross primary productivity (GPP) estimation at the watershed scale. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102755. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Guan, X.; Tan, J.; Jin, H.; Bian, J. A practical topographic correction method for improving Moderate Resolution Imaging Spectroradiometer gross primary productivity estimation over mountainous areas. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102522. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, G.; Li, P.; Li, Z.; Wang, Y.; Wang, B.; Jia, L.; Cheng, Y.; Zhang, J.; Zhuang, S. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public Health 2019, 16, 4709. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, H.; Li, A.; Shao, H.; Xie, X.; Lei, G.; Nan, X.; Hu, G.; Fan, W. Comprehensive assessment of performances of long time-series LAI, FVC and gpp products over mountainous areas: A case study in the three-River Source region, China. Remote Sens. 2021, 14, 61. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- He, C.; Gao, B.; Huang, Q.; Ma, Q.; Dou, Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Petit, C.; Lambin, E.F. Integration of multi-source remote sensing data for land cover change detection. Int. J. Geogr. Inf. Sci. 2001, 15, 785–803. [Google Scholar] [CrossRef]
- Guan, X.; Shen, H.; Wang, Y.; Chu, D.; Li, X.; Yue, L.; Li, W.; Liu, X.; Zhang, L. Fusing MODIS and AVHRR products to generate a global 1-km continuous NDVI time series covering four decades. Big Earth Data 2025, 9, 1–28. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, H.; Liang, Y.; Chen, Z.; Chen, R.; Li, X.; Jakada, H. Horizontal and vertical zoning of carbonate dissolution in China. Geomorphology 2018, 322, 66–75. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.; Chen, N. Rice yield prediction in hubei province based on deep learning and the effect of spatial heterogeneity. Remote Sens. 2023, 15, 1361. [Google Scholar] [CrossRef]
- Wang, Y. The regularity of geographical distributions of the vegetation in Hubei Province. J. Wuhan Bot. Res. 1995, 13, 127–136. [Google Scholar]
- Xie, Z.; Shen, G. Outstanding Universal Value and Conservation of Hubei Shennongjia; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, L.; Liu, X.; Qi, Y.; Ji, X. Identification of high-quality vegetation areas in Hubei Province based on an optimized vegetation health index. Forests 2024, 15, 1576. [Google Scholar] [CrossRef]
- Chen, W.; Huang, C.; Wang, L.; Li, D. Climate extremes and their impacts on interannual vegetation variabilities: A case study in Hubei Province of Central China. Remote Sens. 2018, 10, 477. [Google Scholar] [CrossRef]
- Shi, G.; Ren, F.; Du, Q.; Gao, N. Phytotoponyms, geographical features and vegetation coverage in Western Hubei, China. Entropy 2015, 17, 984–1006. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, H.; Shen, H.; Wu, P.; Zhang, L. A spatial and temporal nonlocal filter-based data fusion method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4476–4488. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Li, J.; Jia, K.; Zhao, L.; Tao, G.; Zhao, W.; Liu, Y.; Yao, Y.; Zhang, X. An Improved Gross Primary Production Model Considering Atmospheric CO2 Fertilization: The Qinghai–Tibet Plateau as a Case Study. Remote Sens. 2024, 16, 1856. [Google Scholar] [CrossRef]
- Ohlson, J.A.; Kim, S. Linear valuation without OLS: The Theil-Sen estimation approach. Rev. Account. Stud. 2015, 20, 395–435. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Carbone, A.; Castelli, G.; Stanley, H.E. Time-dependent Hurst exponent in financial time series. Phys. A Stat. Mech. Its Appl. 2004, 344, 267–271. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Chen, P.; Pan, H.; Xu, Y.; He, W.; Yao, H. Spatial-Temporal Evolution Characteristics and Driving Force Analysis of NDVI in Hubei Province, China, from 2000 to 2022. Forests 2024, 15, 719. [Google Scholar] [CrossRef]
- Qiu, R.; Han, G.; Ma, X.; Xu, H.; Shi, T.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [Google Scholar] [CrossRef]
- Huang, X.; Ma, M.; Wang, X.; Tang, X.; Yang, H. The uncertainty analysis of the MODIS GPP product in global maize croplands. Front. Earth Sci. 2018, 12, 739–749. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Tian, J.; Wu, C. Analysis of error sources in the multi-scale remote sensing estimation of mountain vegetation gross primary productivity. Natl. Remote Sens. Bull. 2024, 29, 203–218. [Google Scholar] [CrossRef]
- Li, Y.; Xiaobin, G.; Huanfeng, S. Optimal parameter schemes for global and regional gross primary productivity estimation: A comparative analysis. Geo-Spat. Inf. Sci. 2025, 28, 65–84. [Google Scholar] [CrossRef]
Data Category | Product/Type | Temporal Resolution | Spatial Resolution | Observation Period |
---|---|---|---|---|
Surface reflectance | Landsat | Quarterly | 30 m | 2001–2020 |
NDVI | MOD13Q1 | 16 days | 250 m | 2001–2020 |
Climate | Total precipitation | Daily | 2001–2020 | |
Surface net solar radiation | Daily | 2001–2020 | ||
Clear-sky direct solar radiation at surface | Daily | 2001–2020 | ||
Surface solar radiation downwards | Daily | 2001–2020 | ||
2 m temperature | Daily | 2001–2020 | ||
GPP products | GOSIF GPP | 8 days | 2001–2020 | |
MODIS GPP | 8 days | 2001–2020 |
Vegetation Type | (gC·MJ−1) |
---|---|
GRA | 0.645 |
FOR | 0.917 |
WET | 1.137 |
SHR | 0.552 |
CRO | 0.645 |
OTH | 0 |
Condition on Slope () | Condition on Z | Trend Value | Interpretation |
---|---|---|---|
2 | Significant positive | ||
1 | Non-significant positive | ||
Significant negative | |||
Non-significant negative | |||
– | 0 | No change |
Condition on H | Condition on | Trend Value | Future Prediction |
---|---|---|---|
2 | Sustained increase | ||
Sustained decrease | |||
Increase to decrease | |||
1 | Decrease to increase | ||
– | 0 | Unpredictable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, D.; Wang, Y.; Ma, Y.; Li, H.; Guan, X. Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei. Remote Sens. 2025, 17, 2186. https://doi.org/10.3390/rs17132186
Bai D, Wang Y, Ma Y, Li H, Guan X. Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei. Remote Sensing. 2025; 17(13):2186. https://doi.org/10.3390/rs17132186
Chicago/Turabian StyleBai, Dicheng, Yuchen Wang, Yongming Ma, Huanhuan Li, and Xiaobin Guan. 2025. "Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei" Remote Sensing 17, no. 13: 2186. https://doi.org/10.3390/rs17132186
APA StyleBai, D., Wang, Y., Ma, Y., Li, H., & Guan, X. (2025). Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei. Remote Sensing, 17(13), 2186. https://doi.org/10.3390/rs17132186