Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. In Situ Chl-a Concentration Data
2.3. Remote Sensing Data
2.4. Atmospheric Correction Processors
2.5. Chl-a Retrieval Indexes
2.6. Performance Metrics
2.7. Scheme Selection
3. Results
3.1. Feature Importance Scoring by Random Forest
3.2. Correlation and Regression Analyses
4. Discussion
4.1. Performance of Satellites
4.2. Performance of Data Categories
4.3. Performance of Atmospheric Correction Processors
4.4. Performance of Retrieval Indexes
4.5. Performance of Individual Bands
4.6. Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mpakairi, K.S.; Muthivhi, F.F.; Dondofema, F.; Munyai, L.F.; Dalu, T. Chlorophyll-a Unveiled: Unlocking Reservoir Insights through Remote Sensing in a Subtropical Reservoir. Environ. Monit. Assess. 2024, 196, 401. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Q.; Zhang, Y.; Li, J.; Shi, K. Research Trends in the Remote Sensing of Phytoplankton Blooms: Results from Bibliometrics. Remote Sens. 2021, 13, 4414. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Adams, H.; Ye, J.; Persaud, B.D.; Slowinski, S.; Kheyrollah Pour, H.; Van Cappellen, P. Rates and Timing of Chlorophyll-a Increases and Related Environmental Variables in Global Temperate and Cold-Temperate Lakes. Earth Syst. Sci. Data 2022, 14, 5139–5156. [Google Scholar] [CrossRef]
- Markovic, S.; Liang, A.; Watson, S.B.; Depew, D.; Zastepa, A.; Surana, P.; Byllaardt, J.V.; Arhonditsis, G.; Dittrich, M. Reduction of Industrial Iron Pollution Promotes Phosphorus Internal Loading in Eutrophic Hamilton Harbour, Lake Ontario, Canada. Environ. Pollut. 2019, 252, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.N.; Pennuto, C.M.; Howell, E.T.; Lewis, T.W.; Makarewicz, J.C. Urban Influences on Cladophora Blooms in Lake Ontario. J. Great Lakes Res. 2012, 38, 116–123. [Google Scholar] [CrossRef]
- Hui, Y.; Zhu, Z.; Atkinson, J.F.; Saharia, A.M. Impacts of Phosphorus Loading Temporal Pattern on Benthic Algae Growth in Lake Ontario. J. Hydrol. 2021, 598, 126449. [Google Scholar] [CrossRef]
- Malkin, S.Y.; Dove, A.; Depew, D.; Smith, R.E.; Guildford, S.J.; Hecky, R.E. Spatiotemporal Patterns of Water Quality in Lake Ontario and Their Implications for Nuisance Growth of Cladophora. J. Great Lakes Res. 2010, 36, 477–489. [Google Scholar] [CrossRef]
- Blagrave, K.; Moslenko, L.; Khan, U.T.; Benoit, N.; Howell, T.; Sharma, S. Heatwaves and Storms Contribute to Degraded Water Quality Conditions in the Nearshore of Lake Ontario. J. Great Lakes Res. 2022, 48, 903–913. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q.; et al. Comparison of Satellite Reflectance Algorithms for Estimating Chlorophyll-a in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef]
- Absalon, D.; Matysik, M.; Woźnica, A.; Janczewska, N. Detection of Changes in the Hydrobiological Parameters of the Oder River during the Ecological Disaster in July 2022 Based on Multi-Parameter Probe Tests and Remote Sensing Methods. Ecol. Indic. 2023, 148, 110103. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mollaee, S.; Fatholahi, S.N.; Li, J. Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data. Can. J. Remote Sens. 2020, 46, 585–602. [Google Scholar] [CrossRef]
- Maeda, E.E.; Lisboa, F.; Kaikkonen, L.; Kallio, K.; Koponen, S.; Brotas, V.; Kuikka, S. Temporal Patterns of Phytoplankton Phenology across High Latitude Lakes Unveiled by Long-Term Time Series of Satellite Data. Remote Sens. Environ. 2019, 221, 609–620. [Google Scholar] [CrossRef]
- Grendaitė, D.; Stonevičius, E. Uncertainty of Atmospheric Correction Algorithms for Chlorophyll α Concentration Retrieval in Lakes from Sentinel-2 Data. Geocarto Int. 2022, 37, 6867–6891. [Google Scholar] [CrossRef]
- Llodrà-Llabrés, J.; Martínez-López, J.; Postma, T.; Pérez-Martínez, C.; Alcaraz-Segura, D. Retrieving Water Chlorophyll-a Concentration in Inland Waters from Sentinel-2 Imagery: Review of Operability, Performance and Ways Forward. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103605. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Abdelal, Q.; Assaf, M.N.; Al-Rawabdeh, A.; Arabasi, S.; Rawashdeh, N.A. Assessment of Sentinel-2 and Landsat-8 OLI for Small-Scale Inland Water Quality Modeling and Monitoring Based on Handheld Hyperspectral Ground Truthing. J. Sens. 2022, 2022, 4643924. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of Atmospheric Correction Algorithms for the Sentinel-2A MultiSpectral Imager over Coastal and Inland Waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Boucher, J.; Weathers, K.C.; Norouzi, H.; Steele, B. Assessing the Effectiveness of Landsat 8 Chlorophyll a Retrieval Algorithms for Regional Freshwater Monitoring. Ecol. Appl. 2018, 28, 1044–1054. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Delegido, J.; Urrego, E.P.; Ruíz-Verdú, A.; Soria, J.M.; Vicente, E.; Moreno, J. Assessment of Sentinel-2-MSI Atmospheric Correction Processors and In Situ Spectrometry Waters Quality Algorithms. Remote Sens. 2022, 14, 4794. [Google Scholar] [CrossRef]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R., Jr.; Martínez, J.-M.; Motta-Marques, D. Atmospheric and Sunglint Correction for Retrieving Chlorophyll-a in a Productive Tropical Estuarine-Lagoon System Using Sentinel-2 MSI Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Tian, S.; Guo, H.; Huang, J.J.; Zhu, X.; Zhang, Z. Comprehensive Comparison Performances of Landsat-8 Atmospheric Correction Methods for Inland and Coastal Waters. Geocarto Int. 2024, 37, 15302–15323. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Development and Application of a Remote Sensing-Based Chlorophyll-a Concentration Prediction Model for Complex Coastal Waters of Hong Kong. J. Hydrol. 2016, 532, 80–89. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Fernández-Tejedor, M.; Diogene, J.; Alcaraz, C. First Results of Phytoplankton Spatial Dynamics in Two NW-Mediterranean Bays from Chlorophyll-a Estimates Using Sentinel 2: Potential Implications for Aquaculture. Remote Sens. 2019, 11, 1756. [Google Scholar] [CrossRef]
- Barreneche, J.M.M.; Guigou, B.; Gallego, F.; Barbieri, A.; Smith, B.; Fernández, M.; Fernández, V.; Pahlevan, N. Monitoring Uruguay’s Freshwaters from Space: An Assessment of Different Satellite Image Processing Schemes for Chlorophyll-a Estimation. Remote Sens. Appl. Soc. Environ. 2023, 29, 100891. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Alameddine, I.; El-Fadel, M. Monitoring Water Quality in a Hypereutrophic Reservoir Using Landsat ETM+ and OLI Sensors: How Transferable Are the Water Quality Algorithms? Environ. Monit. Assess. 2018, 190, 141. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral Analysis Using LANDSAT Images to Monitor the Chlorophyll-a Concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Ogashawara, I.; Kiel, C.; Jechow, A.; Kohnert, K.; Ruhtz, T.; Grossart, H.-P.; Hölker, F.; Nejstgaard, J.C.; Berger, S.A.; Wollrab, S. The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sens. 2021, 13, 1542. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.T.T.; Koike, K.; Nhuan, M.T.; Canh, B.D.; Thao, N.T.P.; Parsons, M. Landsat 8/OLI Two Bands Ratio Algorithm for Chlorophyll-A Concentration Mapping in Hypertrophic Waters: An Application to West Lake in Hanoi (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4919–4929. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; Bravo Alvarez, L.; Lami, A.; Urrutia, R. Recovery of Water Quality and Detection of Algal Blooms in Lake Villarrica through Landsat Satellite Images and Monitoring Data. Remote Sens. 2023, 15, 1929. [Google Scholar] [CrossRef]
- Huang, A.; Rao, Y.R.; Zhang, W. On Recent Trends in Atmospheric and Limnological Variables in Lake Ontario. J. Clim. 2012, 25, 5807–5816. [Google Scholar] [CrossRef]
- Munawar, M.; Fitzpatrick, M.A.J. Eutrophication in Three Canadian Areas of Concern: Phytoplankton and Major Nutrient Interactions. Aquat. Ecosyst. Heal. Manag. 2018, 21, 421–437. [Google Scholar] [CrossRef]
- Howell, E. Influences on Water Quality and Abundance of Cladophora, a Shore-Fouling Green Algae, over Urban Shoreline in Lake Ontario. Water 2018, 10, 1569. [Google Scholar] [CrossRef]
- Auer, M.; McDonald, C.; Kuczynski, A.; Huang, C.; Xue, P. Management of the Phosphorus–Cladophora Dynamic at a Site on Lake Ontario Using a Multi-Module Bioavailable P Model. Water 2021, 13, 375. [Google Scholar] [CrossRef]
- Dove, A.; Chapra, S.C. Long-Term Trends of Nutrients and Trophic Response Variables for the Great Lakes. Limnol. Oceanogr. 2015, 60, 696–721. [Google Scholar] [CrossRef]
- Binding, C.E.; Pizzolato, L.; Zeng, C. EOLakeWatch; Delivering a Comprehensive Suite of Remote Sensing Algal Bloom Indices for Enhanced Monitoring of Canadian Eutrophic Lakes. Ecol. Indic. 2021, 121, 106999. [Google Scholar] [CrossRef]
- Mohamed, M.N.; Wellen, C.; Parsons, C.T.; Taylor, W.D.; Arhonditsis, G.; Chomicki, K.M.; Boyd, D.; Weidman, P.; Mundle, S.O.C.; Van Cappellen, P.; et al. Understanding and Managing the Re-Eutrophication of Lake Erie: Knowledge Gaps and Research Priorities. Freshw. Sci. 2019, 38, 675–691. [Google Scholar] [CrossRef]
- National Laboratory for Environmental Testing, B. Standard Operating Procedure for the Analysis of Chlorophyll a in Natural Waters by Spectrophotometric Determination (Sop B0258w) 2021.
- MECP. The Determination of Chlorophylls A And B and Total Chlorophyll A in River and Lake Samples by Diode Array Detector-Liquid Chromatography-Tandem Mass Spectrometry (E3508). Lab. Serv. Branch 2016, 3508. [Google Scholar]
- MECP. The Determination of Chlorophyll in River and Lake Samples by Spectrophotometry (RCHLO-E3169). Lab. Serv. Branch 2015, 6, 1–37. [Google Scholar]
- Strickland, J.D.; Parsons, T.R. A Practical Handbook of Seawater Analysis. Second Edition, Bulletin 167. Fish. Res. Board Can. Ott. 1972. Available online: https://epic.awi.de/id/eprint/39262/1/Strickland-Parsons_1972.pdf (accessed on 1 December 2023).
- Carlson, R.E. A Trophic State Index for Lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Tuygun, G.T.; Salgut, S.; Elçi, A. Long-Term Spatial-Temporal Monitoring of Eutrophication in Lake Burdur Using Remote Sensing Data. Water Sci. Technol. 2023, 87, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
- Concha, J.A.; Schott, J.R. Retrieval of Color Producing Agents in Case 2 Waters Using Landsat 8. Remote Sens. Environ. 2016, 185, 95–107. [Google Scholar] [CrossRef]
- Philipson, P.; Kratzer, S.; Ben Mustapha, S.; Strömbeck, N.; Stelzer, K. Satellite-Based Water Quality Monitoring in Lake Vänern, Sweden. Int. J. Remote Sens. 2016, 37, 3938–3960. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Li, L. Research on Water Quality Detection Technology Based on Multispectral Remote Sensing. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 032087. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Spectral Reflectance and Absorption of a Massive Red Tide off Southern California. J. Geophys. Res. Ocean. 1998, 103, 21601–21609. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean Color Chlorophyll Algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral Signature of Highly Turbid Waters. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L. Modeling Canopy Water Content for Carbon Estimates from MODIS Data at Land EOS Validation Sites. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 342–344. [Google Scholar]
- Lathrop, R.G.; Lillesand, T.M.; Yandell, B.S. Testing the Utility of Simple Multi-Date Thematic Mapper Calibration Algorithms for Monitoring Turbid Inland Waters. Int. J. Remote Sens. 1991, 12, 2045–2063. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Johnson, W.L.; Deuell, R.L. Use of Landsat Data to Predict the Trophic State of Minnesota Lakes. Photogramm. Eng. Remote Sens. 1983, 49, 219–229. [Google Scholar]
- Yasuoka, Y.; Miyazaki, T. Remote Sensing of Water Quality in the Lake. J. Remote Sens. Soc. Jpn. 1982, 2, 51–62. [Google Scholar]
- Guitelson, A.A.; Nikanorov, A.M.; Szabo, G.Y.; Szilagyi, F. Etude de La Qualite Des Eaux de Surface Par Teledetection. IAHS-AISH Publ. 1986, 157, 111–121. [Google Scholar]
- Dekker, A.G.; Peters, S.W.M. The Use of the Thematic Mapper for the Analysis of Eutrophic Lakes: A Case Study in the Netherlands. Int. J. Remote Sens. 1993, 14, 799–821. [Google Scholar] [CrossRef]
- Gons, H.J. Optical Teledetection of Chlorophyll a in Turbid Inland Waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Mittenzwey, K.-H.; Ullrich, S.; Gitelson, A.A.; Kondratiev, K.Y. Determination of Chlorophyll a of Inland Waters on the Basis of Spectral Reflectance. Limnol. Oceanogr. 1992, 37, 147–149. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kondratyev, K.Y. Optical Models of Mesotrophic and Eutrophic Water Bodies. Int. J. Remote Sens. 1991, 12, 373–385. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Yacobi, Y.Z. Reflectance in the Red and near Infra-Red Ranges of the Spectrum as Tool for Remote Chlorophyll Estimation in Inland Waters-Lake Kinneret Case Study. In Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 7–8 March 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 5.2.6/1–5.2.6/5. [Google Scholar]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation—NASA Technical Reports Server (NTRS). 1974. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 21 April 2024).
- Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll Distribution in Lake Kinneret Determined from Landsat Thematic Mapper Data. Int. J. Remote Sens. 1995, 16, 175–182. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of Chlorophyll Concentration Changes in Lake Garda Using an Image-Based Radiative Transfer Code for Landsat TM Images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Soomets, T.; Toming, K.; Paavel, B.; Kutser, T. Evaluation of Remote Sensing and Modeled Chlorophyll-a Products of the Baltic Sea. J. Appl. Remote Sens. 2022, 16, 046516. [Google Scholar] [CrossRef]
- Gitelson, A. The Peak near 700 Nm on Radiance Spectra of Algae and Water: Relationships of Its Magnitude and Position with Chlorophyll Concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C. Towards a Unified Approach for Remote Estimation of Chlorophyll-a in Both Terrestrial Vegetation and Turbid Productive Waters. Geophys. Res. Lett. 2003, 30, 1938. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the Potential of SeaWiFS and MODIS for Estimating Chlorophyll Concentration in Turbid Productive Waters Using Red and Near-Infrared Bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A Four-Band Semi-Analytical Model for Estimating Chlorophyll a in Highly Turbid Lakes: The Case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. J. Geophys. Res. Ocean. 2012, 117, C0101. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of Intense Plankton Blooms Using the 709 Nm Band of the MERIS Imaging Spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Gower, J.F.R.R.; Doerffer, R.; Borstad, G.A. Interpretation of the 685nm Peak in Water-Leaving Radiance Spectra in Terms of Fluorescence, Absorption and Scattering, and Its Observation by MERIS. Int. J. Remote Sens. 1999, 20, 1771–1786. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Robertson, L. An Algorithm for Detecting Trophic Status (Chlorophyll-a), Cyanobacterial-Dominance, Surface Scums and Floating Vegetation in Inland and Coastal Waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of Surface Algal Blooms Using the Newly Developed Algorithm Surface Algal Bloom Index (SABI). In Proceedings of the Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010, Toulouse, France, 21–23 September 2010; Bostater, C.R., Jr., Mertikas, S.P., Neyt, X., Velez-Reyes, M., Eds.; SPIE Press: Bellingham, WA, USA, 2010; Volume 7825, p. 782506. [Google Scholar]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mortula, M.; Ali, T.; Bachir, A.; Elaksher, A.; Abouleish, M. Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis. Water 2020, 12, 1954. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Tenjo, C.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Peña, R.; Moreno, J. Validation of Water Quality Monitoring Algorithms for Sentinel-2 and Sentinel-3 in Mediterranean Inland Waters with In Situ Reflectance Data. Water 2021, 13, 686. [Google Scholar] [CrossRef]
- Tran, M.D.; Vantrepotte, V.; Loisel, H.; Oliveira, E.N.; Tran, K.T.; Jorge, D.; Mériaux, X.; Paranhos, R. Band Ratios Combination for Estimating Chlorophyll-a from Sentinel-2 and Sentinel-3 in Coastal Waters. Remote Sens. 2023, 15, 1653. [Google Scholar] [CrossRef]
- Gupana, R.S.; Odermatt, D.; Cesana, I.; Giardino, C.; Nedbal, L.; Damm, A. Remote Sensing of Sun-Induced Chlorophyll-a Fluorescence in Inland and Coastal Waters: Current State and Future Prospects. Remote Sens. Environ. 2021, 262, 112482. [Google Scholar] [CrossRef]
- Shaik, I.; Mohammad, S.; Nagamani, P.V.V.; Begum, S.K.K.; Kayet, N.; Varaprasad, D. Assessment of Chlorophyll-a Retrieval Algorithms over Kakinada and Yanam Turbid Coastal Waters along East Coast of India Using Sentinel-3A OLCI and Sentinel-2A MSI Sensors. Remote Sens. Appl. Soc. Environ. 2021, 24, 100644. [Google Scholar] [CrossRef]
- Assegide, E.; Shiferaw, H.; Tibebe, D.; Peppa, M.V.; Walsh, C.L.; Alamirew, T.; Zeleke, G. Spatiotemporal Dynamics of Water Quality Indicators in Koka Reservoir, Ethiopia. Remote Sens. 2023, 15, 1155. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Zolfaghari, K.; Pahlevan, N.; Binding, C.; Gurlin, D.; Simis, S.G.H.; Verdú, A.R.; Li, L.; Crawford, C.J.; Vanderwoude, A.; Errera, R.; et al. Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5515520. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery; DLR Report DLR-IB 565-02/11; DLR: Wessling, Germany, 2011; Volume 565, p. 202. [Google Scholar]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide, Version 8.2.1, February 2013); DLR: Wessling, Germany, 2013; Volume 3, p. 224. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Volume SP-740, p. 54. [Google Scholar]
- Schiller, H.; Doerffer, R. Neural Network for Emulation of an Inverse Model Operational Derivation of Case II Water Properties from MERIS Data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin Semi-Automatic Classification Plugin Documentation. 2017, Volume 4, pp. 3–206. Available online: https://readthedocs.org/projects/semiautomaticclassificationmanual/downloads/pdf/latest/ (accessed on 1 December 2023).
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- ENVI. ENVI Atmospheric Correction Module: QUAC and FLAASH User’s Guide. 2009. Available online: https://www.nv5geospatialsoftware.com/portals/0/pdfs/envi/flaash_module.pdf (accessed on 1 December 2023).
- Felde, G.W.; Anderson, G.P.; Cooley, T.W.; Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Lee, J. Analysis of Hyperion Data with the FLAASH Atmospheric Correction Algorithm. In Proceedings of the IGARSS 2003: 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 1, pp. 90–92. [Google Scholar]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric Correction of Landsat-8/OLI and Sentinel-2/MSI Data Using ICOR Algorithm: Validation for Coastal and Inland Waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Wolters, E.; Toté, C.; Sterckx, S.; Adriaensen, S.; Henocq, C.; Bruniquel, J.; Scifoni, S.; Dransfeld, S. Icor Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with Aeronet, Radcalnet, and Syn Level-2. Remote Sens. 2021, 13, 654. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Frouin, R.J., Murakami, H., Eds.; p. 13. [Google Scholar]
- Bernstein, L.S. Quick Atmospheric Correction Code: Algorithm Description and Recent Upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–13 September 2017; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; Volume 10427, p. 3. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A Processor for Users. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Volume SP-740, pp. 1–8. [Google Scholar]
Study Reference | Total Number of Chl-a Retrieval Indexes | Water Truthing | Imagery Matchups | Temporal Window of Matchups | Temporal Coverage of Matchups | ||||
---|---|---|---|---|---|---|---|---|---|
Number of Chl-a Data Points | Range of Chl-a Concentration (μg/L) | Radiometric Matchup Availability | Comparable * Sensors | Number of Scenes | Atmospheric Corrections | ||||
[17] | 5 | 68–727 | 0–830 | ✓ | OLI, MSI | N/A | ACOLITE, C2X, GRS, MEETC2, OC-SMART, Polymer, SeaDAS, iCOR | ±3 and 30 h | N/A |
[18] | 3 5 | 34 51 | 0–181 | ✓ | OLI MSI | 2 3 | DOS, ATCOR, DSF, EXP, L8SR | ±5 days | 2018–2019 |
[19] | 3 | 1059–1668 | N/A | ✓ | MSI | 5–35 | ACOLITE, C2RCC, iCOR, l2gen, Polymer, Sen2Cor | ±3 and 24 h | 2015–2016 |
[20] | 6 | 351 | 1–65 | ✗ | OLI | 12 | DOS | ±2 and 5 days | 2013–2015 |
[21] | 9 | 146 | 0–309 | ✓ | MSI | 41 | C2RCC, C2X, C2XC, Polymer | ±3 h | 2017–2021 |
[22] | 6 | 97 | 0–250 | ✓ | MSI | 3 | ACOLITE, C2RCC, GRS, iCOR, SeaDAS, Sen2Cor | ±1 day | 2018–2019 |
[23] | 4 | 139 | 0–15 | ✓ | OLI | 61 | SeaDAS, ACOLITE (DSF and EXP), C2RCC, iCOR | ±1 h | 2019–2021 |
[24] | 17 | 120 | 0–13 | ✗ | TM, ETM+ | 27 | 6S | ±2 h | 2000–2012 |
[25] | 7 | 106 | 0–9 | ✗ | MSI | 13 | ACOLITE (DSF) | Same day | 2016–2017 |
[26] | 17 | 102 127 | 2–63 2–40 | ✗ | OLI MSI | 48 44 | SeaDAS, POLYMER, ACOLITE | Same day | 2013–2020 2016–2020 |
[27] | 5 | 54 54 | 3–7 2–7 | ✗ | ETM+ OLI | 8 8 | LEDAPS L8SR | Same day | 2013–2015 |
[28] | 28 | 9–57 | 0–150 | ✓ | MSI | N/A | ACOLITE, C2RCC, POLYMER, Sen2Cor | ±3 days | 2015–2017 |
[29] | 9 | 30 | 1–6 | ✓ | MSI | 2 | ELM | ±1 h | 2016–2017 |
[30] | 11 | 39 | 0–0.6 | ✗ | TM, ETM+, OLI | 14 | DOS | ±9 days | 2001–2003 2017–2019 |
[31] | 5 | 97 | 0–80 | ✓ | MSI | 1 | ACOLITE, C2RCC, C2X, iCOR, MAIN, Sen2Cor | Same day | 2019 |
[32] | 9 | 41 | 0–120 | ✓ | MSI | 41 | C2RCC, C2X | ±1 day | 2018 |
[33] | 4 | 39 | 50–250 | ✓ | OLI | 2 | FLAASH | ±2 h | 2015–2016 |
[34] | 9 | 350 | 0–6 | ✗ | OLI | 25 | ACOLITE | ±9 days | 2014–2021 |
[15] | 8 | 30 | 0–150 | ✓ | MSI | 7 | ACOLITE, iCOR, Sen2Cor, C2RCC, C2X, POLYMER | ±1 day | 2018–2019 |
Current Study | 27 | 205 217 127 51 | 0–137 0–52 0–80 0–31 | ✗ | TM ETM+ OLI MSI | 79 89 49 19 | LEDAPS, LaSRC, Sen2Cor, ACOLITE, ATCOR, C2RCC, DOS 1, FLAASH, iCOR, Polymer, QUAC | ±4 days | 2000–2011 2000–2021 2013–2021 2016–2021 |
Location | ||||||
---|---|---|---|---|---|---|
WLO + HH | WLO | HH | ||||
Source | Organization | Published Data Availability | Chl-a Extraction Method | Fraction of Data (%) | Fraction within Study Site (%) | |
Hamilton Harbour Water Quality Data | ECCC | 1987–2019 | [42] | 68% | 5% | 98% |
Great Lakes Nearshore-Water Chemistry | MECP | 2000–2017 | [43,44] | 15% | 43% | 2% |
Great Lakes Water Quality Monitoring and Surveillance Data | ECCC | 2000–Present | [45] | 17% | 52% | 0% |
100% | 100% | 100% |
Landsat 5 | Landsat 7 | Landsat 8–9 | Sentinel-2 A/B | ||
---|---|---|---|---|---|
Sensor | TM | ETM+ | OLI and TIRS (OLI-2 and TIRS-2) | MSI | |
Operating Dates | 1984–2013 | 1999–Present | 2013–Present | 2015–Present | |
No. of Bands | 7 | 8 | 11 (9 OLI, 2 TIRS) | 13 | |
Spatial Res. (m) | 15 (panchromatic band), 30, 120 (thermal) | 15 (panchromatic band), 30, 60 (thermal) | 15 (panchromatic band), 30, 100 (TIRS) | 10 (4 bands), 20 (6 bands), 60 (3 bands) | |
Temporal Res. (days) | 16 | 16 | 8 (Landsat 8 and 9 combined) | ~5 (Sentinel-2 A and B combined) | |
Radiometric Res. (bit) | 8 | 8 | 12 (14 for Landsat 9) | 12 | |
Spectral Range (nm) | 450–2350 10,400–12,500 (thermal) | 450–2350 10,400–12,500 (thermal) | 430–2300 (OLI) 10,600–12,500 (TIRS) | 443–2190 | |
Chl-a Retrieval Bands in nm (central wavelength) | - | - | 433–453 (443) | 433–453 (443) | |
450–520 (485) | 450–515 (483) | 450–515 (482) | 458–523 (490) | ||
520–600 (560) | 520–605 (565) | 525–600 (562) | 543–578 (560) | ||
630–690 (660) | 630–690 (660) | 630–680 (655) | 650–680 (665) | ||
- | - | - | 698–713 (705) | ||
- | - | - | 733–747 (740) | ||
- | - | - | 773–793 (783) | ||
760–900 (830) | 775–900 (837) | - | 785–900 (842) | ||
- | - | 845–885 (865) | 935–955 (865) |
Index Code | Band Math | Also Known As | Supported Sensors | Original Reference(s) | ||
---|---|---|---|---|---|---|
2BDA | 2-Band Ratios | - | OLI, MSI | N/A | ||
OC3E | OLI, MSI | [52,53,54] | ||||
TM, ETM+, OLI, MSI | ||||||
- | TM, ETM+, MSI | [55] | ||||
OLI, MSI | ||||||
- | TM, ETM+, OLI, MSI | [56,57] | ||||
- | TM, ETM+, OLI, MSI | [58,59,60] | ||||
- | MSI | [61,62,63,64] | ||||
- | MSI | [64] | ||||
- | TM, ETM+, MSI | [65,66] | ||||
OLI, MSI | ||||||
Normalized Indexes | NDGRI | TM, ETM+, OLI, MSI | [67] | |||
NDCI | MSI | [68] | ||||
- | MSI | N/A | ||||
- | MSI | N/A | ||||
NDVI | TM, ETM+, MSI | [69] | ||||
OLI, MSI | ||||||
3BDA | BRG Index or KIVU | TM, ETM+, OLI, MSI | [70,71] | |||
Toming | MSI | [72,73] | ||||
- | MSI | N/A | ||||
- | MSI | [74,75] | ||||
- | MSI | [76] | ||||
FLH/RLH-based Formulation | CI | OLI, MSI | [77] | |||
- | TM, ETM+, OLI, MSI | N/A | ||||
MCI or SLH | MSI | [78,79] | ||||
MPH | MSI | [80] | ||||
4BDA | SABI | OLI, MSI | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahvaran, A.R.; Kheyrollah Pour, H.; Van Cappellen, P. Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario). Remote Sens. 2024, 16, 1595. https://doi.org/10.3390/rs16091595
Shahvaran AR, Kheyrollah Pour H, Van Cappellen P. Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario). Remote Sensing. 2024; 16(9):1595. https://doi.org/10.3390/rs16091595
Chicago/Turabian StyleShahvaran, Ali Reza, Homa Kheyrollah Pour, and Philippe Van Cappellen. 2024. "Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario)" Remote Sensing 16, no. 9: 1595. https://doi.org/10.3390/rs16091595
APA StyleShahvaran, A. R., Kheyrollah Pour, H., & Van Cappellen, P. (2024). Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario). Remote Sensing, 16(9), 1595. https://doi.org/10.3390/rs16091595