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Abstract: Chlorophyll-a concentration (Chl-a) is commonly used as a proxy for phytoplankton
abundance in surface waters of large lakes. Mapping spatial and temporal Chl-a distributions de-
rived from multispectral satellite data is therefore increasingly popular for monitoring trends in
trophic state of these important ecosystems. We evaluated products of eleven atmospheric correc-
tion processors (LEDAPS, LaSRC, Sen2Cor, ACOLITE, ATCOR, C2RCC, DOS 1, FLAASH, iCOR,
Polymer, and QUAC) and 27 reflectance indexes (including band-ratio, three-band, and four-band
algorithms) recommended for Chl-a concentration retrieval. These were applied to the western basin
of Lake Ontario by pairing 236 satellite scenes from Landsat 5, 7, 8, and Sentinel-2 acquired between
2000 and 2022 to 600 near-synchronous and co-located in situ-measured Chl-a concentrations. The in
situ data were categorized based on location, seasonality, and Carlson’s Trophic State Index (TSI).
Linear regression Chl-a models were calibrated for each processing scheme plus data category. The
models were compared using a range of performance metrics. Categorization of data based on
trophic state yielded improved outcomes. Furthermore, Sentinel-2 and Landsat 8 data provided
the best results, while Landsat 5 and 7 underperformed. A total of 28 Chl-a models were devel-
oped across the different data categorization schemes, with RMSEs ranging from 1.1 to 14.1 µg/L.
ACOLITE-corrected images paired with the blue-to-green band ratio emerged as the generally best
performing scheme. However, model performance was dependent on the data filtration practices
and varied between satellites.

Keywords: chlorophyll-a; multispectral remote sensing; satellite imagery; atmospheric correction;
semi-empirical retrieval; band ratios; Western Lake Ontario

1. Introduction

The eutrophication of freshwater bodies is a global environmental concern. It is driven
primarily by nutrient enrichment, most often accelerated by anthropogenic activities such
as agricultural fertilizer application, wastewater discharge, and urbanization [1]. Cultural
eutrophication promotes excessive growth of algae, leading to the deterioration of water
quality and overall ecosystem health, and the loss of aquatic habitats [2]. In extreme
cases, harmful algal blooms (HABs) occur through the rapid proliferation of algae, in
particular cyanobacteria [3]. The occurrence of HABs is influenced by a complex interplay
of biogeochemical and physical factors, including nutrient availability (mainly phosphorus
and nitrogen), water temperature, and hydrodynamics [4].

In the western portion of Lake Ontario, algal blooms are a particular concern in
nearshore areas including Hamilton Harbour (HH), the Toronto shoreline, and the
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Niagara River outlet [5]. Eutrophication in these areas is driven by excess nutrient runoff
associated with rapid urbanization of the Greater Toronto Area [6] and surrounding agri-
cultural and industrial activities [7]. Other contributing factors include nutrient-rich inflow
from upstream Lake Erie via the connecting Niagara River [8], warmer water temperatures,
and changes in circulation patterns [9], as well as ecological disturbances such as the inva-
sion by nuisance mussels [9]. Given these rapidly changing dynamics, continued water
quality monitoring of the nearshore and offshore waters of Western Lake Ontario (WLO)
remains essential.

Traditional field-based water quality monitoring methods have played an integral
role in tracking and assessing trophic changes in large lakes over the past several decades.
While these methods are essential, they face limitations due to their high costs and per-
sonnel requirements, as well as their restricted spatial and temporal coverage. In this
context, remote sensing (RS) techniques have emerged as a valuable complementary tool,
enhancing traditional water quality monitoring with their ability to provide large-scale,
frequent, and cost-effective observations of water bodies [10]. Multispectral satellites like
Landsat 5, 7, 8, and Sentinel-2 are now extensively used for lake eutrophication monitor-
ing at a global scale [11]. In RS research, chlorophyll-a (Chl-a) concentration, as the key
photosynthetic pigment, is widely used to map algal abundance in diverse aquatic environ-
ments, including coastal areas, lakes, and rivers, providing a valuable tool for monitoring
eutrophication trends [12–14]. The accuracy of Chl-a estimations depends highly on the
applied atmospheric correction and the selection of appropriate retrieval algorithms [15].
By carefully addressing these aspects, RS can provide essential data on water quality trends
and dynamics.

The estimation of Chl-a concentrations using multispectral satellite data has been
growing in recent years [16]. This trend is notably tied to the launch of the Sentinel-2
satellite constellation in 2015, which added a red-edge band and increased spatial resolu-
tion down to 10 m. Achieving even higher spatial resolutions will require expanded data
storage capacities, advanced sensors, or lower orbital altitudes. At present, medium spatial
resolution, defined as 10 to 30 m, offers an adequate balance between detail and practi-
cality for retrieving Chl-a concentrations from large water surfaces, including challenging
nearshore areas where land adjacency can be an issue. Further improvements are expected
in the near future with the anticipated launch of NASA’s 10 m super-spectral Landsat Next
in 2030, which promises even finer spectral resolution, likely improving water colour
remote sensing. A limited number of recent studies in the medium-spatial-resolution range
have compared the performance of different atmospheric corrections and Chl-a concentra-
tion retrieval indexes (Table 1). Not surprisingly, these studies show that models to retrieve
Chl-a concentration from satellite data tend to perform best for the data range and the
region they were trained on.
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Table 1. Summary of recently published studies comparing atmospheric corrections and Chl-a retrieval indexes.

Study
Reference

Total Number of
Chl-a Retrieval

Indexes

Water Truthing Imagery Matchups
Temporal

Window of
Matchups

Temporal
Coverage of
Matchups

Number of
Chl-a Data

Points

Range of Chl-a
Concentration

(µg/L)

Radiometric
Matchup

Availability

Comparable *
Sensors

Number of
Scenes Atmospheric Corrections

[17] 5 68–727 0–830 ✓ OLI, MSI N/A ACOLITE, C2X, GRS, MEETC2, OC-SMART,
Polymer, SeaDAS, iCOR ±3 and 30 h N/A

[18] 3
5

34
51 0–181 ✓

OLI
MSI

2
3 DOS, ATCOR, DSF, EXP, L8SR ±5 days 2018–2019

[19] 3 1059–1668 N/A ✓ MSI 5–35 ACOLITE, C2RCC, iCOR, l2gen, Polymer,
Sen2Cor ±3 and 24 h 2015–2016

[20] 6 351 1–65 ✗ OLI 12 DOS ±2 and 5 days 2013–2015

[21] 9 146 0–309 ✓ MSI 41 C2RCC, C2X, C2XC, Polymer ±3 h 2017–2021

[22] 6 97 0–250 ✓ MSI 3 ACOLITE, C2RCC, GRS, iCOR,
SeaDAS, Sen2Cor ±1 day 2018–2019

[23] 4 139 0–15 ✓ OLI 61 SeaDAS, ACOLITE (DSF and EXP),
C2RCC, iCOR ±1 h 2019–2021

[24] 17 120 0–13 ✗ TM, ETM+ 27 6S ±2 h 2000–2012

[25] 7 106 0–9 ✗ MSI 13 ACOLITE (DSF) Same day 2016–2017

[26] 17 102
127

2–63
2–40 ✗

OLI
MSI

48
44 SeaDAS, POLYMER, ACOLITE Same day 2013–2020

2016–2020

[27] 5 54
54

3–7
2–7 ✗

ETM+
OLI

8
8

LEDAPS
L8SR Same day 2013–2015

[28] 28 9–57 0–150 ✓ MSI N/A ACOLITE, C2RCC, POLYMER, Sen2Cor ±3 days 2015–2017

[29] 9 30 1–6 ✓ MSI 2 ELM ±1 h 2016–2017

[30] 11 39 0–0.6 ✗ TM, ETM+, OLI 14 DOS ±9 days 2001–2003
2017–2019

[31] 5 97 0–80 ✓ MSI 1 ACOLITE, C2RCC, C2X, iCOR, MAIN, Sen2Cor Same day 2019

[32] 9 41 0–120 ✓ MSI 41 C2RCC, C2X ±1 day 2018

[33] 4 39 50–250 ✓ OLI 2 FLAASH ±2 h 2015–2016

[34] 9 350 0–6 ✗ OLI 25 ACOLITE ±9 days 2014–2021
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Table 1. Cont.

Study
Reference

Total Number of
Chl-a Retrieval

Indexes

Water Truthing Imagery Matchups
Temporal

Window of
Matchups

Temporal
Coverage of
Matchups

Number of
Chl-a Data

Points

Range of Chl-a
Concentration

(µg/L)

Radiometric
Matchup

Availability

Comparable *
Sensors

Number of
Scenes Atmospheric Corrections

[15] 8 30 0–150 ✓ MSI 7 ACOLITE, iCOR, Sen2Cor, C2RCC,
C2X, POLYMER ±1 day 2018–2019

Current
Study 27

205
217
127
51

0–137
0–52
0–80
0–31

✗

TM
ETM+
OLI
MSI

79
89
49
19

LEDAPS, LaSRC, Sen2Cor, ACOLITE,
ATCOR, C2RCC, DOS 1, FLAASH, iCOR,

Polymer, QUAC
±4 days

2000–2011
2000–2021
2013–2021
2016–2021

* Only limited to the list of sensors used in this study. Also, studies based on simulated satellite imagery are excluded from the table. Abbreviations in alphabetical order:
6S: Second Simulation of the Satellite Signal in the Solar Spectrum, ACOLITE: Atmospheric Correction for OLI Lite, ATCOR: Atmospheric and Topographic Correction, C2RCC:
Case 2 Regional CoastColour, C2X: Case 2 eXtreme, C2X-COMPLEX, DOS: Dark Object Subtraction, DSF: Dark Spectrum Fitting, ELM: Empirical Line Method, ETM+: Enhanced
Thematic Mapper Plus, FLAASH: Fast Line-of-sight Atmospheric Analysis of Hypercubes, GRS: Glint Remove Sentinel, LaSRC: Landsat Surface Reflectance Code, L8SR: Landsat 8 OLI
Surface Reflectance, LEDAPS: Landsat Ecosystem Disturbance Adaptive Processing System, MAIN: Modified Atmospheric Correction for Inland Waters, MSI: Multispectral Instrument,
OC-SMART: Ocean Colour–Simultaneous Marine and Aerosol Retrieval Tool, OLI: Operational Land Imager, QUAC: Quick Atmospheric Correction, SeaDAS: SeaWiFS Data Analysis
System, Sen2Cor: Sentinel-2 Atmospheric Correction, TM: Thematic Mapper.
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The aim of this study is to build on previous studies mentioned in Table 1 by ex-
panding the ranges of Chl-a retrieval indexes, atmospheric correction processors, satellites,
and in situ matchup data included in our analyses. Specifically, we consider 27 Chl-a
retrieval indexes, 11 atmospheric correction processors, four medium-spatial-resolution
(10–30 m resolution) satellites, and 600 in situ matchup data points. Another novelty of
our work is the categorization of the in situ Chl-a data based on seasonality, location, and
Carlson’s Trophic State Index (TSI). This is followed by the derivation of separate regression-
based models for each data category and satellite, which are then compared for their perfor-
mance in retrieving Chl-a concentrations for both nearshore and offshore waters of Western
Lake Ontario. The results of our work should inform future assessments of the changing
spatial–temporal Chl-a distributions in Lake Ontario and other large lakes, thereby con-
tributing to global efforts to use RS in water quality monitoring and management.

2. Materials and Methods
2.1. Study Site

Lake Ontario, the smallest and most easterly of the Great Lakes, ranks as the 13th
largest lake in the world [35]. It has a drainage area of around 64,000 km2, a surface area of
19,000 km2, and a total volume of 1650 km3. The lake’s mean depth is 87 m, the maximum
depth 244 m. The water residence time is approximately 6–8 years, and the lake’s shoreline
extends over 1150 km. Our study focused on the western basin of Lake Ontario, abbreviated
WLO, which represents a critical water resource for an estimated nine million people [9].
WLO covers about one-third of the entire surface area of Lake Ontario (Figure 1). Unlike for
upstream Lake Erie, whole-lake assessments of RS-derived algal abundance remain limited
for WLO. Also included in our study is Hamilton Harbour (HH), a 20 km2 embayment
at the western tip of WLO connected to the lake via a shipping channel. Since 1987,
HH has been designated an Area of Concern under the Canada–US Great Lakes Water
Quality Agreement. As a result, HH has a much higher density of water quality monitoring
stations compared to WLO as can be seen in Figure 1.

Historically, WLO has experienced water quality issues due to both urban and rural
non-point sources of nutrients and contaminants delivered to the lake by streams and storm
sewers, as well as from upstream Lake Erie via the Niagara River [36]. The lake features
mesotrophic to eutrophic nearshore zones and an oligotrophic offshore core [37]. In recent
years, the total phosphorus (TP) concentration in the lake ranges on average from 6 to
8 µg/L, while the Chl-a concentration varies between 0 and 17 µg/L, depending on the
location [38,39]. As expected, HH exhibits significantly higher TP and Chl-a concentrations,
with Chl-a often exceeding 10 µg/L, that is, the threshold value commonly used to define
an algal bloom [40].

The primary drivers of eutrophication in WLO and HH include rapid urbanization,
and ecosystem and climate change [6,7,37], while invasive dreissenid mussels transform
phosphorus into more readily bioavailable forms that promote algae growth [6,37,41]. The
onset, duration, and intensity of algal growth are further influenced by environmental
factors such as temperature, sunlight, and wind mixing [4,40]. The harmful effects of
eutrophication in the region include water supply issues, human and pet health risks,
diminished aquatic life, and economic impacts on tourism, recreational activities, and
lakefront property value [2].
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Figure 1. Map of the study area showing in situ measurement locations of matchup data. Dia-
mond and square markers represent Hamilton Harbour (HH) and Western Lake Ontario (WLO)
measurements, respectively. Each marker is colour-coded according to the respective trophic state.

2.2. In Situ Chl-a Concentration Data

In situ matching data on Chl-a were extracted from the three databases identified
in Table 2. (Note: the hyperlinks to these databases are provided in the Code and Data
availability Statement at the end of the paper). These databases have varying data avail-
ability periods and Chl-a concentration measurement methods (Table 2). The datasets
were filtered based on two criteria: (i) a maximum time window of ±4 days between
the in situ measurements and satellite image acquisition dates and (ii) a sampling water
depth ranging from near surface to a maximum of 1 m. Because only a small portion of
the datasets contained pheophytin-corrected records, the matchup analysis was conducted
based on uncorrected Chl-a concentrations. In the few cases where uncorrected Chl-a con-
centration measurements were not available, pheophytin-corrected Chl-a data were utilized.
This process resulted in 600 near-synchronous, co-located in situ matchups for WLO and
HH, covering the period from 2000 up to 2022.

Of the total matchup data, 22% were collected during autumn/winter (September
to February) and 78% in spring/summer (March to August). To categorize the data based
on the Chl-a concentration data, we used Carlson’s Trophic State Index [TSI] [46] calculated
as TSI = 9.81 × ln(Chl-a) + 30.6. Eutrophic to hypereutrophic conditions are defined by
TSI ≥ 50, which is equivalent to Chl-a concentrations greater than 7.2 µg/L, while oligo-
mesotrophic conditions correspond to TSI < 50 or Chl-a concentrations below 7.2 µg/L [47].
With this definition, 51% of the matchups fell in the oligotrophic/mesotrophic category,
and the other 49% in the eutrophic/hypereutrophic category. The mean Chl-a concen-
tration across all matchups was 10.5 µg/L, with a standard deviation of 11.3 µg/L. See
Table S1 in Supplementary Materials for further details on the in situ Chl-a matchup data.
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A time-series plot of the in situ data is also presented in Figure S1 of Supplementary
Materials colour-coded with their corresponding satellite matchups.

Table 2. Overview of in situ data sources used in this study. ECCC = Environment and Climate
Change Canada; MECP = Ministry of Environment, Conservation and Parks (Province of Ontario).

Location

WLO + HH WLO HH

Source Organization Published Data
Availability

Chl-a Extraction
Method

Fraction of
Data (%)

Fraction within
Study Site (%)

Hamilton Harbour Water Quality Data ECCC 1987–2019 [42] 68% 5% 98%

Great Lakes Nearshore-Water Chemistry MECP 2000–2017 [43,44] 15% 43% 2%

Great Lakes Water Quality Monitoring
and Surveillance Data ECCC 2000–Present [45] 17% 52% 0%

100% 100% 100%

In this study, in situ Chl-a data were classified into four categories (Figure 2): the
‘all’ category includes all the data, the location category separates data between WLO
and HH, the seasonality category has ‘Autumn/Winter (AW)’ and ‘Spring/Summer (SS)’
subcategories, and the TSI category divides the data among the ‘Oligotrophic/Mesotrophic
(OM)’ and ‘Eutrophic/Hypereutrophic (EH)’ subcategories. The categorization helps in
evaluating the performance of each scheme and to better understand the factors that
influence the accuracy of satellite-derived Chl-a concentration estimations. For instance,
a chi-squared test from in situ measurements revealed a significant association between
location and the TSI categories (χ2 = 235, p < 0.001, V = 0.63), which reflects the typically
more eutrophic conditions encountered in HH than WLO.
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2.3. Remote Sensing Data

In this study, images from four medium-spatial-resolution satellites were used: Land-
sat 5, 7, 8, and Sentinel 2 A/B. Our study area is covered by paths 17/18 and row 30 of
Landsat and tiles T17TNJ, T17TNH, T17TPH, and T17TPJ of Sentinel-2, encompassing



Remote Sens. 2024, 16, 1595 8 of 26

two Landsat and four Sentinel-2 scenes. Each of these satellites possesses unique fea-
tures and characteristics that are summarized in Table 3. The differing spatial, spectral,
radiometric, and temporal resolutions of these satellites impact their capacity to estimate
Chl-a concentrations in water bodies [11]. The literature suggests that the inclusion of an
ultra-blue band at approximately 440 nm and the improved signal-to-noise ratio (SNR) of
Landsat 8 and Sentinel-2 yield more accurate Chl-a concentration estimates compared to
the previous generation satellites [48,49].

Table 3. Overview of Landsat 5, 7, 8, and Sentinel-2.

Landsat 5 Landsat 7 Landsat 8–9 Sentinel-2 A/B

Sensor TM ETM+ OLI and TIRS
(OLI-2 and TIRS-2) MSI

Operating Dates 1984–2013 1999–Present 2013–Present 2015–Present

No. of Bands 7 8 11 (9 OLI, 2 TIRS) 13

Spatial Res. (m)
15 (panchromatic

band), 30,
120 (thermal)

15 (panchromatic
band), 30,

60 (thermal)

15 (panchromatic
band), 30, 100 (TIRS)

10 (4 bands), 20
(6 bands), 60 (3 bands)

Temporal Res. (days) 16 16 8 (Landsat 8 and
9 combined)

~5 (Sentinel-2 A and
B combined)

Radiometric Res. (bit) 8 8 12 (14 for Landsat 9) 12

Spectral Range (nm)
450–2350

10,400–12,500
(thermal)

450–2350
10,400–12,500

(thermal)

430–2300 (OLI)
10,600–12,500 (TIRS) 443–2190

C
hl

-a
R

et
ri

ev
al

Ba
nd

s
in

nm
(c

en
tr

al
w

av
el

en
gt

h)

λUB - - 433–453
(443)

433–453
(443)

λB
450–520

(485)
450–515

(483)
450–515

(482)
458–523

(490)

λG
520–600

(560)
520–605

(565)
525–600

(562)
543–578

(560)

λR
630–690

(660)
630–690

(660)
630–680

(655)
650–680

(665)

λRE1 - - - 698–713
(705)

λRE2 - - - 733–747
(740)

λRE3 - - - 773–793
(783)

λNIR1
760–900

(830)
775–900

(837) - 785–900
(842)

λNIR2 - - 845–885
(865)

935–955
(865)

Abbreviations in alphabetical order: G: Green, B: Blue, NIR: Near-Infrared, R: Red, RE: Red-Edge, TIRS: Thermal
Infrared Sensor, UB: Ultra-Blue.

In total, 236 matchup scenes were selected after quality control for cloud, snow, shadow,
and overlapping land pixel artefacts. The scenes were distributed as follows among the
different satellites: Landsat 5: 79 scenes; Landsat 7: 89 scenes; Landsat 8: 49 scenes; and
Sentinel-2: 19 scenes. Each scene contained at least one high-quality pixel coinciding
with an in situ measurement location. Most of the downloaded RS scenes were acquired
within ±1 day of the in situ sampling dates and at most within ±4 days. Such close
temporal matching is important given the rapidly changing algal patterns often observed
in lakes [4].
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2.4. Atmospheric Correction Processors

Atmospheric correction is a crucial step to accurately retrieve Chl-a concentrations
from satellite data because at-sensor radiance is affected by atmospheric gaseous molecules
and aerosols, especially at shorter wavelengths [22,50], as well as by other factors such as
air–water interface, wind, and sunglint [51]. While some atmospheric correction processors
considered here can correct sunglint-related effects to a degree, an investigation of these
effects is beyond the scope of our study.

The availability of atmospheric correction processors varies across the four satellites.
For Landsat 5 and 7, both Level-1 and Level-2 (LEDAPS-corrected) products are publicly
available, and the Level-1 imagery is also compatible with the ACOLITE, ATCOR, DOS1,
FLAASH, and QUAC processors. In the case of Landsat 8, Level-1 and Level-2 (LaSRC-
corrected) are publicly available through the EarthExplorer data hub, and the satellite
is compatible with all the above-mentioned processors plus C2RCC and iCOR. Finally,
Sentinel-2, through the Copernicus data hub, freely offers Level-1 and Level-2 (Sen2Cor-
corrected) products, with compatibility with the ACOLITE, C2RCC, DOS1, iCOR, and
Polymer processors. Although atmospherically corrected Sentinel-2 products (MSIL2A)
are available for download, their global coverage only commenced in late 2018. Hence, we
applied the Sen2Cor processors independently on Sentinel-2 Level-1 images using the ESA
SNAP software (version 9.0.0). Also of note, ACOLITE includes two correction methods:
Dark Spectrum Fitting (DSF, the processor’s default) and Exponential Extrapolation (EXP).
Because DSF has been reported as the better choice for aquatic studies [18,23], it was used
in this study. Table S2 in Supplementary Materials summarizes the atmospheric correction
methods utilized in this study.

2.5. Chl-a Retrieval Indexes

The Chl-a retrieval methods for satellite imagery broadly fall into four groups: em-
pirical, semi-empirical, analytical, and semi-analytical [48]. In this study, we focus on
semi-empirical methods. Semi-empirical models analyze the inherent optical properties
(IOPs) of optically active constituents (OACs) by integrating water spectral theory with
statistical techniques [13]. They offer ease of implementation, reproducible results, and
reasonable accuracy without overfitting risk, all achieved by selecting the most suitable
band combinations for retrieving water quality parameters [50]. Here, the choice of semi-
empirical methods was also dictated by the limited availability of in situ matchup data for
our study site.

Upon conducting an extensive literature review, 27 commonly used semi-empirical
Chl-a indexes were selected. These indexes employ various band combinations to retrieve
the Chl-a concentration from the matching vector of pixel values. The applicability of
these indexes varies across different satellite platforms. Notably, Sentinel-2 and Landsat 8
demonstrate broader compatibility owing to their superior spectral resolution, particularly
in ultra-blue, red-edge, and narrow near-infrared bands. The selected indexes, together
with the corresponding formulas (band math), names, references, and applicability, are
found in Table 4. Next, these indexes were applied to atmospherically corrected images,
selecting the most important feature and atmospheric correction processor, followed by
regression analyses between the retrieved pixel values and in situ Chl-a concentrations.
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Table 4. Chl-a retrieval indexes used in this study.

Index Code Band Math Also Known As Supported Sensors Original Reference(s)

2B
D

A

2-
Ba

nd
R

at
io

s

I1
UB
B - OLI, MSI N/A

I2
UB
G OC3E

OLI, MSI
[52–54]

I3
B
G TM, ETM+, OLI, MSI

I4
NIR1

G - TM, ETM+, MSI
[55]

I5
NIR2

G OLI, MSI

I6
B
R - TM, ETM+, OLI, MSI [56,57]

I7
G
R - TM, ETM+, OLI, MSI [58–60]

I8
RE1

R - MSI [61–64]

I9
RE2

R - MSI [64]

I10
NIR1

R - TM, ETM+, MSI
[65,66]

I11
NIR2

R OLI, MSI

N
or

m
al

iz
ed

In
de

xe
s I12

G−R
G+R NDGRI TM, ETM+, OLI, MSI [67]

I13
RE1−R
RE1+R NDCI MSI [68]

I14
RE2−R
RE2+R - MSI N/A

I15
RE3−R
RE3+R - MSI N/A

I16
NIR1−R
NIR1+R NDVI

TM, ETM+, MSI
[69]

I17
NIR2−R
NIR2+R OLI, MSI
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Table 4. Cont.

Index Code Band Math Also Known As Supported Sensors Original Reference(s)

3B
D

A

I18
B−R

G
BRG Index or

KIVU TM, ETM+, OLI, MSI [70,71]

I19 RE1 − R+RE2
2 Toming MSI [72,73]

I20 RE1 − R+RE3
2 - MSI N/A

I21
[

1
R − 1

RE1

]
× RE2 - MSI [74,75]

I22
[ 1

R −
1

RE1 ]
[ 1

RE2 −
1

RE1 ]
- MSI [76]

FL
H

/R
LH

-b
as

ed
Fo

rm
ul

at
io

n

I23 G − UB −
(

λG−λUB
λR−λUB

)
(R − UB) CI OLI, MSI [77]

I24 G − R −
(

λG−λR
λB−λR

)
(B − R) - TM, ETM+, OLI, MSI N/A

I25 RE1−R−
(

λRE1−λR
λRE2−λR

)
(RE2 − R)

MCI or
SLH MSI [78,79]

I26
RE1 − R −(

λRE1−λR
λNIR2−λR

)
(NIR2 − R)

MPH MSI [80]

4B
D

A

I27
NIR2−R

B+G SABI OLI, MSI [81]

Abbreviations in alphabetical order: 2BDA: 2-Band Algorithm, 3BDA: 3-Band Algorithm, 4BDA: 4-Band Algorithm, FLH: Fluorescence Line Height, MCI: Maximum Chlorophyll Index,
MPH: Maximum Peak Height, NDCI: Normalized Difference Chlorophyll Index, NDGRI: Normalized Difference Green and Red Index, NDVI: Normalized Difference Vegetation Index,
RLH: Reflectance Line Height, SLH: Scattering Line Height.
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2.6. Performance Metrics

Correlation was assessed using Pearson’s r and Spearman’s ρ coefficients. The former
was calculated as

r =
∑
[(

I − I
)(

log(chlameas)− log(chlameas)
)]

√
∑
[(

I − I
)2
]
× ∑

[(
log(chlameas)− log(chlameas)

)2
] (1)

where I is the spectral index (i.e., the independent variable or predictor) and chlameas
is the measured in situ Chl-a concentration (i.e., the dependent variable or response).
Spearman’s ρ coefficient was given by

ρ = 1 − 6 ∑ d2

n(n2 − 1)
(2)

where d is the difference between a pair of ranks and n is the number of data. For both
correlation coefficients, the values range from −1 to 1. Statistically, a significant correlation
exists when the absolute values of r and ρ fall within the range 0.5 to 1.

Regression analysis is often used to assess the performance of semi-empirical RS-
derived models against the water-truth parameters. Here, we employed the following
metrics to assess the models’ predictive capability [26,51,82]:

RMSLE =

√
1
n ∑

{
[log(chlameas)− log(chlamod)]

2
}

(3)

RMSE (µg/L) =

√
1
n ∑

[
(chlameas − chlamod)

2
]

(4)

Bias = 10
{ 1

n ∑ [log ( chlameas
chlamod

)]}
(5)

MAE = 10
[ 1

n ∑ |log ( chlameas
chlamod

)|]
(6)

MAPE (%) = 100 × 1
n ∑

[
chlameas − chlamod

chlameas

]
(7)

MDAPE (%) = 100 × r̃ (8)

where r̃ is the median of |chlamod(i)−chlameas(i)|
chlameas((i))

where i = 1, . . . , n

ε (%) = 100 ×
(

10Y − 1
)

(9)

where Y is the median of
∣∣∣log

(
chlameas
chlamod

)∣∣∣
β (%) = 100 ×

(
10Z − 1

)
× sing(Z) (10)

where Z is the median of
[
log

(
chlameas
chlamod

)]

R2 = 1 −
∑
{
[log(chlameas)− log(chlamod)]

2
}

∑
{[

log(chlameas)− log(chlameas)
]2
} (11)

where the ∑ signs above denote summation over i = 1, . . ., n. Generally, lower absolute
values for the root-mean-squared logarithmic error (RMSLE), root-mean-squared error
(RMSE), and mean absolute error (MAE) indicate better model performance, while higher
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values for R2 imply better goodness of fit. Bias values near one indicate little bias, while
values above and below one indicate average under- and over-prediction, respectively.
Mean absolute percentage error (MAPE) and median absolute percentage error (MDAPE)
measure the percentage error, with 0% implying perfect prediction. Similarly, the metrics
ε and β report relative errors, with 100% indicating an accurate median prediction while
values above (below) 100% indicate model overestimation (underestimation). Using these
metrics together enabled a comprehensive model performance assessment. Note that,
for some of the metrics, a base-10 logarithmic transformation was used to enhance data
normality and reliability [51]. The overview of data and methodology and key steps is
summarized in Figure 3.
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2.7. Scheme Selection

In order to perform the regression analysis and develop an RS-derived Chl-a (ChlaRS)
model for a given scenario (i.e., a given satellite and data category combination), the
primary (most significant) feature (i.e., the retrieval index) as well as atmospheric correction
processor for the ChlaRS model were first identified. Random Forest (RF) scoring was
primarily used in the selection of the optimal scheme for each satellite and data category.
While in most cases the top-ranked RF importance score determined the best scheme (20 out
of 28 scenarios), we occasionally selected the second-ranked scheme when it demonstrated
significantly higher correlation coefficients (for both Pearson’s r and Spearman’s ρ).

3. Results
3.1. Feature Importance Scoring by Random Forest

Feature importance analysis by RF ranks the significance of input variables in pre-
dicting the target output through a tree-based learning mechanism. In this study, RF was
used to quantify the importance of the different combinations of retrieval indexes and
atmospheric correction methods (i.e., the schemes) for the different satellites and data
categories (i.e., the different scenarios). We used the RandomForestRegressor and Sim-
pleImputer from the sklearn library [83] in Python to model the scheme importance and
handle missing data, respectively. The SimpleImputer was configured to impute missing
values using the mean strategy. We then trained a RandomForestRegressor model equipped
with 100 estimators (individual decision trees) and set to a random state of 42 (as the seed
value for the algorithm’s random number generator) to ensure reproducibility. The feature
importance scores were directly extracted from the fitted model, providing a quantitative
measure of each scheme’s contribution to the prediction accuracy.

The results, shown in Figure 4, exhibit notable differences in scheme importance across
scenarios. While in some scenarios a single scheme clearly dominated, indicating a distinct
preference for that specific scheme, in other scenarios multiple schemes yielded comparable
importance. Among the atmospheric correction processors, QUAC and FLAASH tended to



Remote Sens. 2024, 16, 1595 14 of 26

dominate for Landsat 5 and 8, Level-2 (LEDAPS) for Landsat 7, DOS1, C2RCC, and ACOL-
ITE for Sentinel-2. Generally, FLAASH, DOS1, Level-2, and QUAC products performed
best. Out of the 28 scenarios, Level-1 (uncorrected data) only emerged as the top product
in 3 scenarios, hence underscoring the critical importance of atmospheric correction prior
to processing satellite data. Interestingly, iCOR and Polymer were never among the top
processors, although they showed relatively high importance in several scenarios. In terms
of the Chl-a indexes, I3, I4, and I18 were favoured by Landsat 5 and 7, I1, I3, I6, and I24 by
Landsat 8, and I3 and I18 by Sentinel-2. Overall, I3 (blue-to-green ratio) emerged as the
preferred index for Chl-a concentration prediction across all satellites and data categories.
These results should help inform the preliminary selection of retrieval indexes and suitable
atmospheric correction processors when developing multiple regression or machine learn-
ing models in future RS studies aimed at analyzing spatial–temporal Chl-a trends in lakes
and other surface water bodies.

3.2. Correlation and Regression Analyses

Correlation analysis was applied to examine relationships between in situ Chl-a con-
centrations and the corresponding spectral indexes derived from atmospherically corrected
matchup pixels [84,85]. Figure 5 presents the resulting correlation coefficients for the re-
trieval indexes. A heatmap of only R2 values from the correlation analysis is also provided
in Figure S2 of the Supplementary Materials. These figures reveal that some indexes, such
as I27, exhibited an overall negative correlation, that is, an increase in the index value corre-
sponds to a decrease in Chl-a concentration. Conversely, indexes such as for example I26,
exhibited a positive correlation for most scenarios, indicating a direct relationship between
the index value and the Chl-a concentration. However, the majority of correlation metrics
were in the range ±0.5, indicating statistically insignificant correlation. Furthermore, the
results indicated that, regardless of the data category, both Sentinel-2 and Landsat 8 con-
stantly had superior correlations compared to the other satellites. Of note is that while
correlation analysis shows the strength and direction of the relationship, it does not provide
insights into the models’ prediction accuracy or biases.

To select the optimal scheme (combination of atmospheric correction processor and
Chl-a retrieval index) for each scenario (data category and satellite), we primarily relied
on the RF importance scores because they offer a more robust feature selection metric for
regression models compared to traditional correlation coefficients. Therefore, for each
scenario, we initially ranked schemes by RF importance score. The top-ranked scheme
was then selected, unless the second-ranked scheme demonstrated significantly higher
correlation coefficients (for both Pearson’s r and Spearman’s ρ). Out of 28 scenarios, the
optimal schemes of 20 scenarios were directly determined by the highest RF importance
score, while the remaining 8 had the second-highest RF score but ranked significantly better
based on the correlation coefficients.

Next, a linear regression was fitted between the scheme-derived and matchup Chl-a
concentrations to generate a predictive equation for Chl-a. The predicted versus matchup
(measured) Chl-a concentrations are plotted in Figure 6. Details on the performance metrics
as well as the regression equations, are presented in Table S3 of Supplementary Materials.
The plots in Figure 6 are colour-coded by satellite (Landsat 5, 7, 8, and Sentinel-2, left to
right) and identify the four in situ data categories defined in Section 2.2: all (no filtering),
location (HH or WLO), seasonality (AW or SS), and TSI (OM or EH). The retrieval index and
atmospheric correction processor as well as the values for the matchup count, regression
slope, RMSE, and R2 are also shown on the plots.
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Landsat 5 and 7 data typically exhibited higher RMSE, from 1.5 (WLO) to 14.1 µg/L
(EH). In contrast, Landsat 5’s HH and EH categories had nearly zero slopes, indicating
ineffective predictive power. The best performance for Landsat 5 occurred in the SS category,
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with a slope and R2 of 0.38, indicating overprediction and underprediction at low and
high concentrations, respectively. The Landsat 7 models generally yielded low slopes,
except for the WLO location subcategory model (slope: 0.40, R2: 0.38, RMSE: 1.5 µg/L).
Landsat 8 models had slopes between 0.11 and 0.43 and RMSE between 1.3 and 12.7 µg/L.
The best Landsat 8 model for WLO data yielded a slope of 0.43, RMSE of 1.4 µg/L, and
R2 of 0.39. Sentinel-2 models generally outperformed those for the other satellites, with
slopes from 0.14 to 0.54, RMSE from 1.2 to 7.0 µg/L, and R2 from 0.16 to 0.52. We attribute
this to Sentinel-2’s superior spatial, spectral, and radiometric resolution. Most models for
Sentinel-2 were atmospherically corrected using ACOLITE or DOS1. For the subcategory
OM, Sentinel-2 exhibited the best performance (slope: 0.52, RMSE: 1.2 µg/L, R2: 0.52) and
hence provided the best option for the lower Chl-a concentration range due to its higher
sensitivity (higher radiometric resolution) to variations in water colour.

4. Discussion
4.1. Performance of Satellites

Overall, compared to Landsat 5 and 7, Sentinel-2 and Landsat 8 demonstrate su-
perior performance, with RMSLE values ranging from 0.18 (ML8-WLO and ML8-OM) to
0.49 (ML8-All) for Landsat 8, and 0.15 (MS2-EH) to 0.38 (MS2-All) for Sentinel-2. The av-
erage RMSLE for all seven scenarios is 0.34 for Landsat 8 and 0.27 for Sentinel-2, sug-
gesting a slightly better performance for Sentinel-2. In contrast, Landsat 5 and 7 have
RMSLE ranges of 0.21–0.41 and 0.18–0.52, respectively. The other performance metrics
similarly imply the superior performance of Sentinel-2, followed by Landsat 8. For example,
Sentinel-2, Landsat 8, 7, and 5 have R2 ranges of 0.16–0.52, 0.08–0.39, 0.04–0.38, and
0.01–0.38, respectively. The comparable performance of Landsat 5 and 7 is consistent
with the similar sensor configurations of both satellites. The weak performance of Landsat
5 and 7 is likely due to sensor-specific radiometric capabilities resulting in lower SNR. It
should also be noted that the Sentinel-2 models were trained on less data than those for
other satellites, mainly because of its more recent launch in mid-2015 as well as the scarcity
of in situ measurements during the years of COVID-19 restrictions.

Among the four satellites, the Chl-a concentrations predicted by the Landsat 7 mod-
els tend to exhibit the lowest slopes relative to the in situ concentrations, averaging 0.14
across all seven data categories (Figure 6). The average slope is slightly better for Land-
sat 5 (0.19) and Landsat 8 (0.22), but distinctly superior for Sentinel-2 (0.40). In princi-
ple, a perfect match between satellite-derived and in situ-measured Chl-a should yield
a 1:1 slope. Given this, models such as ML7-All, ML7-HH, ML7-SS, as well as ML5-HH
and ML5-SS, with slopes less than 0.04, can be considered entirely ineffective. However,
even for the better performing Sentinel-2 models, the slopes are less than the theoretical
1:1 slope. This means that above and below a threshold value a given model underpredicts
and overpredicts the Chl-a concentration, respectively. For the HH plus EH categories this
threshold is approximately 12.0 µg/L, while for the WLO plus OM categories it is about
1.2 µg/L. One factor contributing to the less than 1:1 slope could be the different spatial
scales of the satellite versus in situ Chl-a concentrations. While the former average Chl-a
concentrations cover entire pixels, the in situ measurements sample the small-scale hetero-
geneity in phytoplankton distributions in the lake’s surface waters. The range of the in situ
Chl-a (point) measurements can thus be expected to exceed that of the satellite-derived
concentrations. On a model-predicted versus in situ Chl-a concentration plot (Figure 6),
this would translate in a slope of less than one.

4.2. Performance of Data Categories

Among the various categorization approaches, the ‘all’ category (no filtration) shows
the poorest results, with RMSLE values as high as 0.49 and R2 values as low as 0.08. Cat-
egorizing according to seasonality does not seem to be effective either, with the AW and
SS categories exhibiting RMSLE values in the ranges 0.37–0.52 and 0.37–0.48, respectively.
When in situ data are categorized based on location, the WLO category performed moder-
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ately better, with RMSLE values ranging from 0.17 to 0.21, while the HH category showed
slightly higher RMSLE values from 0.31 to 0.44. The most promising results are obtained
when in situ data are categorized according to TSI. The EH and OM categories have rela-
tively low average RMSLE values of 0.18 and 0.20, respectively. The superior performance
for the EH category is not entirely surprising, given that the higher Chl-a concentrations
yield more intense spectral signatures (higher reflectance). This observation is supported
by other performance metrics, such as MAE and MAPE.

4.3. Performance of Atmospheric Correction Processors

Among the final 28 top-performing models, only two were developed using
Level-1 (i.e., without atmospheric correction) imagery, underscoring the vital importance
of atmospheric correction as a preprocessing step, as expected from previous studies [22].
ACOLITE and LEDAPS feature prominently, with six and five top-performing models,
respectively. Three out of the six ACOLITE-corrected models apply to Sentinel-2 imagery.
The broad applicability of ACOLITE is also apparent in the literature [15,17]. Despite a
recent study demonstrating its superiority over ACOLITE [86], Polymer appears in only
one of the eight top-performing models for Sentinel-2 scenarios. The land-oriented Sen2Cor
and iCOR are absent from any of the Sentinel-2 top-performing models, which aligns with
the findings of similar comparative studies [19]. Among the five LEDAPS-corrected models,
four are associated with Landsat 7 and one with Landsat 5. Regarding performance, the RM-
SLE for ACOLITE-corrected models ranges from 0.16 to 0.41, while for LEDAPS-corrected
models, RMSLE ranges from 0.20 to 0.49. It is worth mentioning that SeaDAS was out of
the scope of this study; however, comparative studies report mixed findings regarding its
performance compared to ACOLITE for the OLI and MSI sensors, with some suggesting
underperformance [23] and others indicating overperformance [17,26].

More surprisingly, even though more sophisticated atmospheric correction processors
specific to Sentinel-2 are available, the simpler DOS1 seems to be preferred for correcting
Sentinel-2 data. Only for MS2-HH is the more advanced Polymer selected. This aligns
with previous work [18], where DOS1 outperformed four other atmospheric correction
processors for Sentinel-2, including ACOLITE (DSF and EXP), Sen2Cor, and ATCOR.
Similarly, Landsat 8 models often perform better with simpler atmospheric correction
processors, such as QUAC for ML8-OM, or even with uncorrected Level-1 as in the case of
ML8-WLO. Nonetheless, more specialized atmospheric correction processors, like FLAASH
(three times) or C2RCC, also rank among the top performers. Some studies even suggest
a superior performance of C2RCC over ACOLITE, particularly for turbid waters [31]. By
contrast, ATCOR is only preferred in two models, one for Landsat 5 and the other for
Landsat 7, while none of the top-performing models use iCOR- or Sen2Cor-corrected data.
These results are consistent with previous comparative studies [31], probably because of
overcorrection of iCOR and Sen2Cor in the blue and green ranges [23] and unsuitability for
red-edge to NIR wavelengths [29].

4.4. Performance of Retrieval Indexes

The I3 index (blue-to-green ratio) scores highest, appearing nine times in the top-
performing models. The superior performance of the I3 index has been consistently recognized
in comparative studies across varying trophic levels, including low trophic [18,19,23,25,86]
and hypereutrophic [33] conditions. Of the nine instances, two are for Sentinel-2 and
Landsat 8 each, four for Landsat 7, and one for Landsat 5. The second-most-frequent
retrieval index among the 28 models is the I18 index (also known as BRG and KIVU), with
five appearances, three of which are for Sentinel-2 with average RMSLE and R2 values of
0.30 and 0.39, respectively. In third position, we find I24, with two instances each for Land-
sat 8 and 7. Aside from I24, other retrieval indexes with formulations similar to FLH—such
as I23 (CI), I25 (MCI), and I26 (MPH), which are more commonly used with low-spatial-
resolution satellites with enhanced fluorescence detection capabilities like MERIS, MODIS,
and OLCI [87]—were absent from the top-performing models. Possibly, this reflects their
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poor performance in low-turbidity offshore waters, compared to turbid coastal waters [88].
The I4 (NIR-to-green ratio), I6 (blue-to-red ratio), I7 (green-to-red ratio), and I12 (NDGRI)
indexes each appear twice, while I1 (UB-to-blue) appears only once.

Importantly, 18 of the 27 originally retained retrieval indexes from the literature are
not in the top-performing models, including I8 (RE-to-red ratio) that forms the basis of
the equations used in [17]. Our findings further suggest poor performance of I10 and I11
(NIR-to-red ratio), I16 and I17 (NDVI), and I27 (SABI) for Chl-a concentration retrieval in
low-turbidity waters. While some previous studies reached similar conclusions (e.g., [20]),
others have reported that the use of the NIR-to-red ratio can be effective in Case 2 (turbid)
waters where high concentrations of CDOM and suspended sediments complicate the
retrieval of Chl-a concentrations [22,23,32,86]. Nonetheless, simple two-band ratios appear
to perform better than more complex three-band ratios, while the sole four-band index
considered is not among the top performers. One advantage of two-band ratios lies in their
reduced dependency on the accuracy of atmospheric correction, leading to more robust
inversion capabilities within water colour algorithms [23,29]. Overall, our results support
ACOLITE paired with I3 as yielding the best-performing retrieval combinations.

4.5. Performance of Individual Bands

Out of the final 28 top-performing models, the green band is included in 25 models,
and the blue band in 21. Both bands feature prominently in retrieval indexes, for example,
I3, I18, and I24. Generally, atmospheric correction processors tend to yield lower uncertainty
with the green and blue bands than for the red to near-infrared range, likely because of
better signal strength and SNR [19,23]. Green and blue also often produce promising results
when paired with the red band, such as in MS2-All, MS2-AW, and MS2-EH (see also [89]). The
red band is utilized in 15 of the top-performing models and appears in various retrieval
indexes, including I6, I7, and I12. Despite the wide range of performance outcomes, the
red band proves particularly effective in some models, for example MS2-SS.

The near-infrared band, which is only used in I4, appears in two models: one for
Landsat 5 the other for Landsat 7. However, both models show unsatisfactory performance
(R2 of 0.19). Another band that appears in just two models is the ultra-blue, featured in I1
and I2 for ML8-WLO and MS2-HH, with a better performance for ML8-WLO (RMSLE of 0.18
and an R2 of 0.39). Contrary to expectations, the red-edge bands of Sentinel-2 do not appear
in any of the retrieval indexes. The most sensitive bands for modeling low concentrations of
Chl-a are red, green, and blue (RGB). Only at higher Chl-a concentrations does a reflective
peak in the red-edge become more distinguishable. The relatively low Chl-a concentration
training data likely explain why the red-edge bands do not appear in the Sentinel-2 models:
the highest Chl-a concentration for Sentinel-2 matchups is 17 µg/L.

4.6. Uncertainties

Several potential sources of uncertainty may impact the results presented. One sig-
nificant source is the influence of various OACs, such as suspended solids and coloured
dissolved organic matter (CDOM), which can directly affect water-leaving radiance and,
therefore, can cause misestimations of Chl-a concentrations [13]. Spatial heterogeneity
of in situ Chl-a concentrations is likely another source of uncertainty because small-scale
variability of the Chl-a concentration over small distances (<10 m) may not be captured at
the spatial resolution of the satellite images [90]. Similarly, temporal mismatches between
in situ measurements and satellite overpass introduces uncertainties, with longer time
differences increasing the uncertainty in the models [20]. Only 11% of the measurements
were synchronous (i.e., on the same day) with the satellite overpass. Additionally, field
data, although commonly referred to as water-truth data, may not represent the absolute
true state of the water and inherently involve errors associated with sampling and labora-
tory extraction [91]. Lastly, atmospheric errors are an unavoidable source of uncertainty
in aquatic remote sensing studies. Despite significant improvements in atmospheric cor-
rection processors, none perfectly replicate the water-leaving radiance. Comparisons of
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calculated remote sensing reflectance with in situ water-leaving reflectance show that even
high-performing models can have median errors of up to 30% for the green and red bands
and up to 60% for the blue band [17], with mean absolute differences of up to 60% [19].

5. Conclusions

This study assesses the influences of a variety of factors, including selection of satel-
lites, in situ data categories, atmospheric correction processors, and retrieval indexes, on
the performance of RS-derived Chl-a concentration retrieval models for the nearshore
and offshore waters of the western basin of Lake Ontario, including Hamilton Harbour.
We combine images from four satellites (Landsat 5, 7, 8, and Sentinel-2) with 600 in situ
Chl-a matchups for the period 2000 to 2022. The matchups are divided into seven cate-
gories based on location, seasonality, and Carlson’s TSI, resulting in a total of 28 scenarios.
For each scenario, we compare the performance of 27 Chl-a retrieval indexes paired to
11 atmospheric correction products. Sentinel-2 is found to systematically outperform other
satellites in Chl-a concentration retrieval. The results further show the effectiveness of
categorizing in situ Chl-a concentration data based on trophic state and tailoring algorithms
to each category accordingly.

The results also highlight the better performance of band ratio indexes, particularly
the blue-to-green index. In contrast, normalized difference indexes and indexes with FLH
formulations are less effective for our case study. While the green and blue bands emerge as
the preferred bands for Chl-a concentration estimation, the effectiveness of spectral bands
depends on the specific index, satellite, and atmospheric correction method used; these
must therefore be carefully evaluated in the development of Chl-a concentration retrieval
models. Overall, no single scheme yields a universally transferable retrieval model. That
is, a model should be tailored to the study site and objectives, as well as the specific data
availability, category, and satellite platform and sensor. Another key finding is that model
complexity does not necessarily correlate with improved retrieval accuracy, implying that
simpler models should be given appropriate consideration in RS water quality applications.
Our study adds to the literature on semi-empirical RS Chl-a retrieval approaches that
are emerging as essential tools in water quality monitoring that can help protect large
freshwater lakes against the undesirable impacts of eutrophication.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/rs16091595/s1, Figure S1: Time series plot of in situ data, displaying Hamilton
Harbour (HH, diamond markers) and Western Lake Ontario (WLO, square markers) alongside
Landsat 5 (blue), 7 (red), 8 (yellow), and Sentinel-2 (purple) matchups. The green background
represents oligotrophic/mesotrophic and eutrophic/hypereutrophic classes based on Carlson’s
Trophic State Index (TSI). Two outlier concentrations of 137 and 80 µg/L are excluded for better visual
presentation; Figure S2: Heatmaps of R2 between in situ Chl-a concentrations and corresponding
index values of co-located pixels across various schemes and subcategories. Warmer colours indicate
higher R2 (better performance), while colder ones signify lower R2. Black cells indicate N/A values;
Table S1: Descriptive statistics of the in situ data categorized based on seasonality, study location,
and Carlson’s Trophic State Index (TSI); Table S2: Atmospheric correction possessors utilized in this
study. Level-2 products of Landsat 5 and 7 (LEDAPS- and LaSRC-corrected) are readily available for
download and are therefore excluded from the table below; Table S3: Summary of RS-derived Chl-a
models across satellites and data categories. L5 = Landsat 5, L7 = Landsat 7, L8 = Landsat 8, and
S2 = Sentinel-2. References [92–108] are cited in the Supplementary Materials.
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