Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Data Utilized
2.3. Processing in ODC
2.4. Fractional Cover Calculations
2.5. Statistical Testing
- H0: No significant temporal trend in FC types, by percent cover.
- Ha: Significant temporal trend in FC types, by percent cover.
3. Results
3.1. Fractional Cover Regression
3.2. Mann–Kendall and Sen’s Slope Tests
3.3. Zonal Summary Statistics
4. Discussion
4.1. Temporal Vegetation Trends in Djibouti
4.2. Connections between FC and NDVI
4.3. Advantages of Data Processing in Datacubes
4.4. Implications for Agriculture and Food Security
5. Conclusions
- The FC values for pv suggest an overall decline of vegetation abundance and health, in alignment with an increasingly arid environment and less photosynthetic vegetation, equating to a loss that is equivalent to ~7.7% of Djibouti’s arable area.
- Districts with the greatest levels of pv and NDVI showed the greatest variability in those measures, pointing to the sensitive nature of photosynthetic vegetation in arid regions.
- Climate change, although not studied here, poses an imminent threat to photosynthetic vegetation, agriculture, and food security in Djibouti and other arid nations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Xu, X.K.; Chen, H.; Levy, J.K. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chin. Sci. Bull. 2008, 53, 915–922. [Google Scholar] [CrossRef]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef]
- El-Beltagy, A.; Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Secur. 2012, 1, 3. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef]
- Rishmawi, K.; Prince, S.D.; Xue, Y. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa. Remote Sens. 2016, 8, 910. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Qu, C.; Hao, X. Agriculture drought and food security monitoring over the horn of Africa (HOA) from space. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–4. [Google Scholar]
- USDA. CropScape and Cropland Data Layers Information; USDA: Washington, DC, USA, 2022.
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Weier, J. Measuring Vegetation (NDVI and EVI); Herring, D., Ed.; NASA: Washington, DC, USA, 2000.
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Bégué, A.; Madec, S.; Lemettais, L.; Leroux, L.; Interdonato, R.; Becker-Reshef, I.; Barker, B.; Justice, C.; Kerdilés, H.; Meroni, M. How well do EO-based food security warning systems for food security agree? Comparison of NDVI-based vegetation anomaly maps in West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1641–1653. [Google Scholar] [CrossRef]
- Kopp, S.; Becker, P.; Doshi, A.; Wright, D.J.; Zhang, K.; Xu, H. Achieving the Full Vision of Earth Observation Data Cubes. Data 2019, 4, 94. [Google Scholar] [CrossRef]
- ODC. Open Data Cube. Available online: https://www.opendatacube.org (accessed on 14 December 2022).
- Wagner, W.; Bauer-Marschallinger, B.; Navacchi, C.; Reuß, F.; Cao, S.; Reimer, C.; Schramm, M.; Briese, C. A Sentinel-1 Backscatter Datacube for Global Land Monitoring Applications. Remote Sens. 2021, 13, 4622. [Google Scholar] [CrossRef]
- ODC. Open Data Cube Overview. Available online: https://www.opendatacube.org/overview (accessed on 14 December 2022).
- Wellington, M.J.; Renzullo, L.J.; Hosseini, M. High-Dimensional Satellite Image Compositing and Statistics for Enhanced Irrigated Crop Mapping. Remote Sens. 2021, 13, 1300. [Google Scholar] [CrossRef]
- Africa, D. Digital Earth Africa. Available online: https://www.digitalearthafrica.org (accessed on 14 October 2022).
- Digital Earth Africa. GeoMAD. 2022. Available online: https://docs.digitalearthafrica.org/en/latest/data_specs/GeoMAD_specs.html#Technical-information (accessed on 14 October 2022).
- Digital Earth Africa. Fractional Cover. 2021 ed. 2021. Available online: https://docs.digitalearthafrica.org/en/latest/data_specs/Fractional_Cover_specs.html?highlight=fractional%20cover (accessed on 14 October 2022).
- Govind, A. Towards Climate Change Preparedness in the MENA’s Agricultural Sector. Agronomy 2022, 12, 279. [Google Scholar] [CrossRef]
- Brown, M.E.; Funk, C.C.; Galu, G.; Choularton, R. Earlier famine warning possible using remote sensing and models. Eos Trans. Am. Geophys. Union 2007, 88, 381–382. [Google Scholar] [CrossRef]
- Fre, Z.; Tsegay, B. Economic contribution of pastoral and agro pastoral production to food security and livelihoods systems in Africa: The case of Eastern Sudan, Eritrea and Western Ethiopia in the Horn of Africa. Ethiop. E—J. Res. Innov. Foresight 2013, 5, 14–31. [Google Scholar]
- Oroda, A. Application of remote sensing to early warning for food security and environmental monitoring in the Horn of Africa. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2001, 34, W6. [Google Scholar]
- Pavanello, S. Working across Borders—Harnessing the Potential of Cross-Border Activities to Improve Livelihood Security in the Horn of Africa Drylands. Oversees Development Institute-Humanitarian Policy Group. 2010. Available online: https://odi.org/en/publications/working-across-borders-harnessing-the-potential-of-cross-border-activities-to-improve-livelihood-security-in-the-horn-of-africa-drylands/ (accessed on 14 October 2022).
- Sasson, A. Food security for Africa: An urgent global challenge. Agric. Food Secur. 2012, 1, 1–16. [Google Scholar] [CrossRef]
- Thrupp, L.A.; Megateli, N. Critical Links: Food Security and the Environment in the Greater Horn of Africa; World Resources Institute: Washington, DC, USA, 1999. [Google Scholar]
- Vogels, M.; de Jong, S.; Sterk, G.; Douma, H.; Addink, E. Spatio-Temporal Patterns of Smallholder Irrigated Agriculture in the Horn of Africa Using GEOBIA and Sentinel-2 Imagery. Remote Sens. 2019, 11, 143. [Google Scholar] [CrossRef]
- Vrieling, A.; de Leeuw, J.; Said, M. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series. Remote Sens. 2013, 5, 982–1000. [Google Scholar] [CrossRef]
- UN. United Nations Global Issues Population. Available online: https://www.un.org/en/global-issues/population#:~:text=Africa%3A%20fastest%20growing%20continent,projected%20to%20double%20by%202050 (accessed on 14 December 2022).
- Devereux, S.; Edwards, J. Climate Change and Food Security; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- USAID. FEWS NET Djibouti Monitoring Report. Available online: https://fews.net/east-africa/djibouti (accessed on 12 December 2022).
- United Nations. No. 46495. International Fund for Agricultural Development and Djibouti. In United Nations Treaty Series; UN: New York, NY, USA, 2018; 380p. [Google Scholar]
- Magin, G. Djibouti. BirdLife International. 1999. Available online: http://www.datazone.birdlife.org/userfiles/file/IBAs/AfricaCntryPDFs/Djibouti.pdf (accessed on 15 September 2022).
- Hassen, T.B.; El Bilali, H. Food security in the gulf cooperation council countries: Challenges and prospects. J. Food Secur. 2019, 7, 159–169. [Google Scholar] [CrossRef]
- Mutopo, P.; Beyene, A.; Haaland, H.; Boamah, F.; Widengård, M.; Skarstein, R. Biofuels, Land Grabbing and Food Security in Africa; Bloomsbury Publishing: London, UK, 2011. [Google Scholar]
- Food and Agricultural Organization of the United Nations. Djibouti Country Profile. Available online: https://www.fao.org/countryprofiles/index/en/?iso3=DJI (accessed on 14 October 2022).
- Scarth, P.; Roder, A.; Schmidt, M. Tracking grazing pressure and climate interaction—The role of Landsat fractional cover in time series analysis. In Proceedings of the 15th Australasian Remote Sensing & Photogrammetry Conference (ARSPC), Alice Springs, Australia, 13–17 September 2010. [Google Scholar]
- Hill, M.J.; Guerschman, J.P. Global trends in vegetation fractional cover: Hotspots for change in bare soil and non-photosynthetic vegetation. Agric. Ecosyst. Environ. 2022, 324, 107719. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. BioScience 2004, 54, 523–534. [Google Scholar] [CrossRef]
- Dennison, P.; Roberts, D.A.; Chambers, J.Q.; Daughtry, C.S.; Guerschman, J.P.; Kokaly, R.F.; Okin, C.G.S.; Scarth, P.F. Global Measurement of Non-Photosynthetic Vegetation; NASA: Washington, DC, USA, 2016.
- Liu, J.; Fan, J.; Yang, C.; Xu, F.; Zhang, X. Novel vegetation indices for estimating photosynthetic and non-photosynthetic fractional vegetation cover from Sentinel data. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102793. [Google Scholar] [CrossRef]
- Tian, J.; Su, S.; Tian, Q.; Zhan, W.; Xi, Y.; Wang, N. A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102361. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Muir, J.; Schmidt, M.; Tindall, D.; Trevithick, R.; Scarth, P.; Stewart, J.B. Field Measurement of Fractional Ground Cover; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australian, 2011. [Google Scholar]
- Zheng, G.; Bao, A.; Li, X.; Jiang, L.; Chang, C.; Chen, T.; Gao, Z. The potential of multispectral vegetation indices feature space for quantitatively estimating the photosynthetic, non-photosynthetic vegetation and bare soil fractions in northern china. Photogramm. Eng. Remote Sens. 2019, 85, 65–76. [Google Scholar] [CrossRef]
- World Bank. Djibouti. 2021. Available online: https://data.worldbank.org/country/djibouti (accessed on 22 September 2022).
- CIA. The World Factbook Country Summary; CIA: Langley, VA, USA, 2022.
- United Nations Development Programme. Djibouti: Strengthening Resilience to Build Food Security; United Nations Development Programme: New York, NY, USA, 2018. [Google Scholar]
- United Nations Development Programme. Djibouti; United Nations Development Programme: New York, NY, USA, 2021. [Google Scholar]
- United Nations Statistics. Djibouti Environment Statistics Country Snapshot. 2016. Available online: https://unstats.un.org/unsd/ENVIRONMENT/envpdf/Country_Snapshots_Dec_2016/Djibouti.pdf (accessed on 15 November 2022).
- US Department of State. Djibouti. 2023. Available online: https://travel.state.gov/content/travel/en/international-travel/International-Travel-Country-Information-Pages/Djibouti.html (accessed on 14 October 2023).
- World Bank. Djibouti. 2023. Available online: https://data.worldbank.org/country/djibouti (accessed on 14 September 2023).
- United Nations Development Programme—Djibouti. 2023. Available online: https://www.dj.undp.org/ (accessed on 14 November 2023).
- African Union. Djibouti. 2022. Available online: https://au.int/en/countryprofiles-3 (accessed on 30 March 2024).
- World Health Organization. Djibouti. 2023. Available online: https://www.who.int/countries/dji/en/ (accessed on 15 November 2023).
- United Nations Educational, Scientific and Cultural Organization. Djibouti. 2023. Available online: https://en.unesco.org/countries/djibouti (accessed on 14 November 2023).
- United Nations Conference on Trade and Development. Djibouti: Harnessing Trade for Human Development in the Digital Age; United Nations Conference on Trade and Development: Geneva, Switzerland, 2019. [Google Scholar]
- African Development Bank Group. Djibouti Economic Outlook. 2021. Available online: https://www.afdb.org/en/countries/east-africa/djibouti/djibouti-economic-outlook (accessed on 14 November 2022).
- Wardle, J.A.; Sagan, V.; Mohammed, F. Using Open Data Cube on the Cloud to Investigate Food Security by Means of Cropland Changes in Djibouti. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 1039–1044. [Google Scholar] [CrossRef]
- Schmidt, M.; Denham, R.; Scarth, P. Fractional ground cover monitoring of pastures and agricultural areas in Queensland. In Proceedings of the 15th Australian Remote Sensing and Photogrammetry Conference (ARSPC), Alice Springs, Australia, 13–17 September 2010; pp. 13–17. [Google Scholar]
- Digital Earth Africa. Water Observations from Space. 2022. Available online: https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_WOfS_specs.html (accessed on 22 September 2022).
- National Aeronautics and Space Administration. Landsat 7 2021. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-7/ (accessed on 14 October 2022).
- Dask. Available online: https://docs.dask.org/en/stable/index.html (accessed on 22 February 2023).
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1955. [Google Scholar]
- Kendall Tau Metric. 2023. Available online: https://encyclopediaofmath.org/index.php?title=Kendall_tau_metric (accessed on 22 September 2022).
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econ. J. Econ. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Daniel, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; Troubador Publishing Ltd.: Leicestershire, UK, 2007. [Google Scholar]
- Teegavarapu, R. Trends and Changes in Hydroclimatic Variables: Links to Climate Variability and Change; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Hussain, e.a. pyMannKendall. Available online: https://pypi.org/project/pymannkendall/ (accessed on 18 May 2023).
- Hussain, e.a. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Sutton, A.; Fisher, A.; Metternicht, G. Assessing the Accuracy of Landsat Vegetation Fractional Cover for Monitoring Australian Drylands. Remote Sens. 2022, 14, 6322. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; He, X.; Mao, P.; Tian, H. Is Current Research on How Climate Change Impacts Global Food Security Really Objective? Foods 2021, 10, 2342. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 1–25. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tang, L.N.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Guan, K.; Wood, E.F.; Caylor, K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 2012, 124, 653–665. [Google Scholar] [CrossRef]
- Appel, M.; Pebesma, E. On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library. Data 2019, 4, 92. [Google Scholar] [CrossRef]
- Killough, B.; Siqueira, A.; Dyke, G. Advancements in the Open Data Cube and Analysis Ready Data—Past, Present and Future. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, 26 September–2 October 2020; pp. 3373–3375. [Google Scholar]
- Anaconda. Dask Distributed Documentation. Available online: https://distributed.dask.org/en/latest/ (accessed on 13 September 2023).
- Zhou, J.; Chen, J.; Chen, X.; Zhu, X.; Qiu, Y.; Song, H.; Rao, Y.; Zhang, C.; Cao, X.; Cui, X. Sensitivity of six typical spatiotemporal fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series reconstruction. Remote Sens. Environ. 2021, 252, 112130. [Google Scholar] [CrossRef]
- African Union, Semi-Arid Food Grain Research and Development. Challenges and Opportunities for Strategic Agricultural Commodity Value Chains Development in the IGAD Region. 2014. Available online: https://archives.au.int/bitstream/handle/123456789/1973/Challenges%20and%20Opportunities%20for%20Strategic%20Agricultural%20Commodity%20Value%20Chains_E.pdf?sequence=1&isAllowed=y (accessed on 22 September 2022).
- Chandrasekharam, D.; Lashin, A.; Nassir Al, A.; Al-Bassam, A.M.; Varun, C. Geothermal energy for desalination to secure food security: Case study in Djibouti. Energy Sustain. Soc. 2019, 9, 24. [Google Scholar] [CrossRef]
Product | Description | Band ID | Name | Value Range | Units | No Data |
---|---|---|---|---|---|---|
fc_ls | Fractional Cover from Landsat | bs | bare soil | 1–100 | percent | 255 |
pv | photosynthetic vegetation | 1–100 | percent | 255 | ||
npv | non-photosynthetic vegetation | 1–100 | percent | 255 | ||
ue | unmixing error | 1 | 255 | |||
wofs_ls | Water Observations from Space using Landsat | water | Water Observation Feature Layer | 0–255 | na | 1 |
Mann-Kendall | Sen’s Slope | |||||||
---|---|---|---|---|---|---|---|---|
Photosynthetic (Smoothed) | Alpha | MK-Stat | z-Stat | p-Value | Trend | Alpha | Slope | Intercept |
MEAN | 0.05 | −190 | −3.945 | 0.00008 | yes | 0.05 | −0.091 | 1.984 |
MAXIMUM | 0.05 | −134 | −2.776 | 0.00550 | yes | 0.05 | −0.156 | 3.669 |
MINIMUM | 0.05 | −242 | −5.030 | 0.00000 | yes | 0.05 | −0.034 | 0.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardle, J.; Phillips, Z. Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube. Remote Sens. 2024, 16, 1241. https://doi.org/10.3390/rs16071241
Wardle J, Phillips Z. Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube. Remote Sensing. 2024; 16(7):1241. https://doi.org/10.3390/rs16071241
Chicago/Turabian StyleWardle, Julee, and Zachary Phillips. 2024. "Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube" Remote Sensing 16, no. 7: 1241. https://doi.org/10.3390/rs16071241
APA StyleWardle, J., & Phillips, Z. (2024). Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube. Remote Sensing, 16(7), 1241. https://doi.org/10.3390/rs16071241