A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data
Abstract
:1. Introduction
2. Study Area and the Data
2.1. Study Area
2.2. FY-3D MWRI Data
2.3. FY-3D Medium Resolution Spectral Imager-2 (MERSI-2) Data
3. Methodology
4. Results
5. Discussions
5.1. Spatial Distribution of the Monthly MLSE
5.2. Seasonal Distribution of the MLSE
5.3. Possible Error Sources of the Retrieved MLSE
5.3.1. Errors from the FY-3D MWRI Brightness Temperature Measurements
5.3.2. Errors from the FY-3D LST
5.3.3. Errors from the FY-3D WVC
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radiometry. In Microwave Remote Sensing: Active and Passive, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1981; pp. 186–255. [Google Scholar]
- Chen, K.; Fan, J.; Xian, Z. Assimilation of MWHS-2/FY-3C 183 GHz Channels Using a Dynamic Emissivity Retrieval and Its Impacts on Precipitation Forecasts: A Southwest Vortex Case. Adv. Meteorol. 2021, 5, 6427620. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Peters-Lidard, C.D.; Hernandez, C.; Turk, F.J.; Aires, F.; Prigent, C.; Lin, X.; Boukabara, S.A.; Furuzawa, F.A.; Gopalan, K.; et al. An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens. 2013, 51, 378–398. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P. WindSat soil moisture algorithm and validation. In Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, July 23–27 2007. [Google Scholar]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Shahroudi, N.; Rossow, W. Using land surface microwave emissivities to isolate the signature of snow on different surface types. Remote Sens. Environ. 2014, 152, 638–653. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Khanbilvardi, R. Potential of satellite-based land emissivity estimates for the detection of high-latitude freeze and thaw states. Geophys. Res. Lett. 2017, 44, 2336–2342. [Google Scholar] [CrossRef]
- Shati, F.; Prakash, S.; Norouzi, H.; Blake, R. Assessment of differences between near-surface air and soil temperatures for reliable detection of high-latitude freeze and thaw states. Cold Reg. Sci. Technol. 2017, 145, 86–92. [Google Scholar] [CrossRef]
- Zabolotskikh, E.V.; Khvorostovsky, K.S.; Chapron, B. An Advanced Algorithm to Retrieve Total Atmospheric Water Vapor Content from the Advanced Microwave Scanning Radiometer Data Over Sea Ice and Sea Water Surfaces in the Arctic. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3123–3135. [Google Scholar] [CrossRef]
- Zhou, F.-C.; Song, X.; Leng, P.; Wu, H.; Tang, B.-H. An algorithm for retrieving precipitable water vapor over land based on passive microwave satellite data. Adv. Meteorol. 2016, 2016, 4126393. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Combs, C.L.; Jones, A.S.; Randel, D.L.; Vonder, T.H. Further developments in estimating cloud liquid water over land using microwave and infrared satellite measurements. J. Appl. Meteorol. Clim. 1997, 36, 389–405. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. Retrieval of surface temperature in boreal forest zone from SSM/I data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1188–1200. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.R. Retrieval of surface and atmospheric parameters over land from SSM/I: Potential and limitations. Q. J. R. Meteorol. Soc. 1999, 125, 2379–2400. [Google Scholar] [CrossRef]
- Mao, K.B.; Shi, J.C.; Li, Z.L.; Qin, Z.; Li, M.; Xu, B. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data. Sci. China Ser. D Earth Sci. 2007, 7, 1115–1120. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Calvet, J.C.; Pellarin, T.; Van de Griend, A.A.; Berger, M.; Ferrazzoli, P. Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Remote Sens. Environ. 2003, 85, 489–506. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Mao, K.; Tang, H.J.; Zhang, L.X.; Li, M.C.; Guo, Y.; Zhao, D.Z. A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data. Int. J. Remote Sens. 2008, 29, 2905–2925. [Google Scholar] [CrossRef]
- Prigent, C.; Liang, P.; Tian, Y.; Aires, F.; Moncet, J.L.; Boukabara, S.A. Evaluation of modeled microwave land surface emissivities with satellite-based estimates. J. Geophys. Res. 2015, 120, 2706–2718. [Google Scholar] [CrossRef]
- Weng, F.; Liu, Q. Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci. 2003, 60, 2633–2646. [Google Scholar] [CrossRef]
- Karbou, F.; Gérard, É.; Rabier, F. Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Q. J. Roy. Meteor. Soc. 2006, 132, 2333–2355. [Google Scholar] [CrossRef]
- Prigent, C.; Jaumouille, E.; Chevallier, F.; Aires, F. A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived Estimates. IEEE Trans. Geosci. Remote Sens. 2008, 46, 344–352. [Google Scholar] [CrossRef]
- Weng, F.; Yan, B.; Grody, N.C. A microwave land emissivity model. J. Geophys. Res. 2001, 106, 20115–20123. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.B.; Matthews, E. Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res. 1997, 102, 21867–21890. [Google Scholar] [CrossRef]
- Moncet, J.L.; Liang, P.; Galantowicz, J.F.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos. 2011, 116, 971–978. [Google Scholar] [CrossRef]
- Norouzi, H.; Temimi, M.; Rossow, W.B.; Pearl, C.; Azarderakhsh, M.; Khanbilvardi, R. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties. Hydrol. Earth Syst. Sci. 2011, 15, 5667–5699. [Google Scholar] [CrossRef]
- Karbou, F.; Prigent, C.; Eymard, L.; Pardo, J.R. Microwave land emissivity calculations using AMSU measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 948–959. [Google Scholar] [CrossRef]
- Furuzawa, F.A.; Masunaga, H.; Nakamura, K. Development of a land surface emissivity algorithm for use by microwave rain retrieval algorithms. In SPIE Asia-Pacific Remote Sensing; SPIE: Kyoto, Japan, 2012; Volume 8523, pp. 269–280. [Google Scholar]
- Turk, F.J.; Li, L.; Haddad, Z.S. A Physically Based Soil Moisture and Microwave Emissivity Data Set for Global Precipitation Measurement (GPM) Applications. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7637–7650. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Tesfagiorgis, K. Global land surface emissivity estimation from AMSR2 observations. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1270–1274. [Google Scholar] [CrossRef]
- Wu, Y.; Qian, B.; Bao, Y.; Petropoulos, G.P.; Liu, X.; Li, L. Microwave Land Emissivity Calculations over the Qinghai-Tibetan Plateau Using FY-3B/MWRI Measurements. Remote Sens. 2019, 11, 2206. [Google Scholar] [CrossRef]
- Xu, R.; Pan, Z.; Han, Y.; Zheng, W.; Wu, S. Surface Properties of Global Land Surface Microwave Emissivity Derived from FY-3D/MWRI Measurements. Sensors 2023, 23, 5534. [Google Scholar] [CrossRef]
- Karbou, F.; Rabier, F.; Prigent, C. The Assimilation of Observations from the Advanced Microwave Sounding Unit over Sea Ice in the French Global Numerical Weather Prediction System. Mon. Weather. Rev. 2014, 142, 125–140. [Google Scholar] [CrossRef]
- Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Masunaga, H. Assessment of the consistency among global microwave land surface emissivity products. Atmos. Meas. Tech. 2015, 8, 1197–1205. [Google Scholar] [CrossRef]
- Xiao, H.; Han, W.; Wang, H.; Wang, J.; Xu, C. Impact of FY-3D MWRI radiance assimilation in GRAPES 4DVar on forecasts of Typhoon Shanshan. J. Meteorol. Res. 2020, 34, 836–850. [Google Scholar] [CrossRef]
- Xie, X.; Wu, S.; Xu, H.; Yu, W.; He, J.; Gu, S. Ascending-Descending Bias Correction of Microwave Radiation Imager on Board FengYun-3C. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3126–3134. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.; Xu, N.; Chen, L. Water Vapor Retrievals from Near-Infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument Onboard the Fengyun-3D satellite. Adv. Atmos. Sci. 2021, 38, 1351–1366. [Google Scholar] [CrossRef]
- Han, X.J.; Duan, S.B.; Li, Z.-L. Atmospheric correction for retrieving ground brightness temperature at commonly-used passive microwave frequencies. Opt. Express 2017, 25, A36. [Google Scholar] [CrossRef]
- Zhou, F.-C.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Tang, R.; Song, X.; Yan, G. Retrieving K-band instantaneous microwave land surface emissivity based on passive microwave brightness temperature and atmospheric precipitable water vapor data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Mao, K.B.; Qin, Z.; Shi, J.; Gong, P. A practical split-window algorithm for retrieving land surface temperature from MODIS data. Int. J. Remote Sens. 2005, 26, 3181–3204. [Google Scholar] [CrossRef]
- Wang, H.; Mao, K.; Mu, F.; Shi, J.; Qin, Z. A split window algorithm for retrieving land surface temperature from FY-3D MERSI-2 data. Remote Sens. 2019, 11, 2083. [Google Scholar] [CrossRef]
- Hu, J.; Fu, Y.; Zhang, P.; Min, Q.; Gao, Z.; Wu, S.; Li, R. Satellite retrieval of microwave land surface emissivity under clear and cloudy skies in China using observations from AMSR-E and MODIS. Remote Sens. 2021, 13, 3980. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 43, 67–85. [Google Scholar] [CrossRef]
- Li, Z.-L.; Zhang, R.; Sun, X.; Su, H.; Tang, X.; Zhu, Z.; Sobrino, J.A. Experimental system for the study of the directional thermal emission of natural surfaces. Int. J. Remote Sens. 2004, 25, 195–204. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C. Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes through Response Analysis (SPECTRA) mission. J. Geophys. Res. Atmos. 2005, 110, D16. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Aveni, S.; Blackett, M. The first evaluation of the FY-3D/MERSI-2 sensor’s thermal infrared capabilities for deriving land surface temperature in volcanic regions: A case study of Mount Etna. Int. J. Remote Sens. 2022, 43, 2777–2792. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Hou, W.; Ma, Y.; Wnag, Y.; Wang, S.; Yang, D. Validation of FY-3D MERSI-2 Precipitable Water Vapor (PWV) datasets using ground-based PWV data from AERONET. Remote Sens. 2021, 13, 3246. [Google Scholar] [CrossRef]
Central Frequency (GHz) | Bandwidth (MHz) | Polarization | NEΔT (K) | Range (K) |
---|---|---|---|---|
10.65 | 180 | V, H | 0.5 | 3–340 |
18.7 | 200 | 0.5 | ||
23.8 | 400 | 0.5 | ||
36.5 | 400 | 0.5 | ||
89 | 3000 | 0.8 |
Central Frequency (GHz) | MWRI (km) | AMSR2 (km) |
---|---|---|
10.65 | 51 × 85 | 24 × 42 |
18.7 | 30 × 50 | 14 × 22 |
23.8 | 27 × 45 | 15 × 26 |
36.5 | 18 × 30 | 7 × 12 |
89 | 9 × 15 | 3 × 5 |
Polarization | Frequency (GHz) | R | Bias (K) |
---|---|---|---|
H | 10.65 | 0.99 | −2.77 |
18.7 | 0.98 | 0.25 | |
23.8 | 0.97 | −3.14 | |
36.5 | 0.96 | −4.49 | |
89 | 0.92 | −0.98 | |
V | 10.65 | 0.99 | −5.1 |
18.7 | 0.98 | −2.88 | |
23.8 | 0.97 | −4.47 | |
36.5 | 0.96 | −5.05 | |
89 | 0.92 | −2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Han, X.; Tang, S.; Cao, G.; Song, X.; Wang, B. A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data. Remote Sens. 2024, 16, 352. https://doi.org/10.3390/rs16020352
Zhou F, Han X, Tang S, Cao G, Song X, Wang B. A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data. Remote Sensing. 2024; 16(2):352. https://doi.org/10.3390/rs16020352
Chicago/Turabian StyleZhou, Fangcheng, Xiuzhen Han, Shihao Tang, Guangzhen Cao, Xiaoning Song, and Binqian Wang. 2024. "A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data" Remote Sensing 16, no. 2: 352. https://doi.org/10.3390/rs16020352
APA StyleZhou, F., Han, X., Tang, S., Cao, G., Song, X., & Wang, B. (2024). A Physics-Based Method for Retrieving Land Surface Emissivities from FengYun-3D Microwave Radiation Imager Data. Remote Sensing, 16(2), 352. https://doi.org/10.3390/rs16020352