A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images
Abstract
:1. Introduction
2. Related Work
3. Datasets
3.1. Land Cover (LC) Transfer Datasets
3.2. China and Scandinavian Season Transfer Datasets
3.3. Alps Dataset
3.4. This-City-Does-Not-Exist Dataset
4. The VQ-VAE 2 One-Class Classifier
- The encoder , mapping the input x onto a hidden representation h (i.e., )).
- The decoder , reconstructing an approximate version of the input from the hidden representation (i.e., ).
5. Experiments and Results
5.1. EfficientNet-B4 Detector
5.2. Vector Quantized Variational Autoencoder 2
5.3. Comparison on the City-Does-Not-Exist Dataset
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Briefings Bioinform. 2017, 18, 851–869. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Networks Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, G.M.; Spasov, S.; Duggento, A.; Passamonti, L.; Lió, P.; Toschi, N. Multimodal and multicontrast image fusion via deep generative models. Inf. Fusion 2022, 88, 146–160. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Baracchi, D.; Ni, R.; Zhao, Y.; Argenti, F.; Piva, A. A survey of deep learning-based source image forensics. J. Imaging 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- High Resolution Satellite Data. Available online: https://landinfo.com/worldwide-mapping-products/high-resolution-global-satellite-imagery/ (accessed on 22 November 2022).
- Abady, L.; Horváth, J.; Tondi, B.; Delp, E.J.; Barni, M. Manipulation and generation of synthetic satellite images using deep learning models. J. Appl. Remote Sens. 2022, 16, 046504. [Google Scholar] [CrossRef]
- Baier, G.; Deschemps, A.; Schmitt, M.; Yokoya, N. Synthesizing Optical and SAR Imagery From Land Cover Maps and Auxiliary Raster Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, S.; Xu, C.; Sun, Y.; Deng, C. Deep fake geography? When geospatial data encounter Artificial Intelligence. Cartogr. Geogr. Inf. Sci. 2021, 48, 338–352. [Google Scholar] [CrossRef]
- Australian Misleading Fires News. Available online: https://www.bbc.com/news/blogs-trending-51020564 (accessed on 19 November 2022).
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 4401–4410. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar] [CrossRef]
- Huang, X.; Belongie, S.J. Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 1510–1519. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, T.; Li, H. StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 5908–5916. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, Y.; Huang, W.; Yang, C.; Xu, F. Multi-scale dual-modal generative adversarial networks for text-to-image synthesis. Multimed. Tools Appl. 2023, 82, 15061–15077. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York, NY, USA, 19–24 June 2016; Balcan, M., Weinberger, K.Q., Eds.; JMLR Workshop and Conference Proceedings; JMLR: Brookline, MA, USA, 2016; Volume 48, pp. 1558–1566. [Google Scholar]
- Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Singh, S., Markovitch, S., Eds.; AAAI Press: Washington, DC, USA, 2017; pp. 2852–2858. [Google Scholar] [CrossRef]
- Ping, W.; Peng, K.; Gibiansky, A.; Arik, S.Ö.; Kannan, A.; Narang, S.; Raiman, J.; Miller, J. Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Yang, L.; Chou, S.; Yang, Y. MidiNet: A Convolutional Generative Adversarial Network for Symbolic-Domain Music Generation. In Proceedings of the 18th International Society for Music Information Retrieval Conference, ISMIR 2017, Suzhou, China, 23–27 October 2017; Cunningham, S.J., Duan, Z., Hu, X., Turnbull, D., Eds.; Ubiquity Press: London, UK, 2017; pp. 324–331. [Google Scholar]
- Abady, L.; Barni, M.; Garzelli, A.; Tondi, B. GAN generation of synthetic multispectral satellite images. In Proceedings of the Image and Signal Processing for Remote Sensing XXVI, International Society for Optics and Photonics, Online, 21–25 September 2020; Volume 11533, pp. 122–133. [Google Scholar]
- Abady, L.; Dimitri, G.M.; Barni, M. Detection and Localization of GAN Manipulated Multi-spectral Satellite Images. In Proceedings of the 30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 5–7 October 2022; pp. 339–344. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Yarlagadda, S.; Güera, D.; Bestagini, P.; Zhu, F.; Tubaro, S.; Delp, E. Satellite image forgery detection and localization using GAN and one-class classifier. In Proceedings of the Electronic Imaging (EI), San Francisco, CA, USA, 28 January–1 February 2018. [Google Scholar] [CrossRef]
- Bartusiak, E.R.; Yarlagadda, S.K.; Güera, D.; Bestagini, P.; Tubaro, S.; Zhu, F.M.; Delp, E.J. Splicing detection and localization in satellite imagery using conditional GANs. In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 28–30 March 2019. [Google Scholar] [CrossRef]
- Horvàth, J.; Güera, D.; Yarlagadda, S.K.; Bestagini, P.; Zhu, F.M.; Tubaro, S.; Delp, E.J. Anomaly-based manipulation detection in satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Tax, D.M.J.; Duin, R.P.W. Support Vector Data Description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef]
- Horvàth, J.; Mas Montserrat, D.; Hao, H.; Delp, E.J. Manipulation detection in satellite images using deep belief networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Horváth, J.; Baireddy, S.; Hao, H.; Montserrat, D.M.; Delp, E.J. Manipulation Detection in Satellite Images Using Vision Transformer. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 1032–1041. [Google Scholar] [CrossRef]
- Horváth, J.; Montserrat, D.M.; Delp, E.J.; Horváth, J. Nested Attention U-Net: A Splicing Detection Method for Satellite Images. In Proceedings of the Pattern Recognition. ICPR International Workshops and Challenges, Virtual, 10–15 January 2021; pp. 516–529. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 8107–8116. [Google Scholar] [CrossRef]
- Chen, H.S.; Zhang, K.; Hu, S.; You, S.; Kuo, C.C.J. Geo-DefakeHop: High-Performance Geographic Fake Image Detection. arXiv 2021, arXiv:2110.09795. [Google Scholar]
- Abady, L.; Barni, M.; Garzelli, A.; Tondi, B. Generation of synthetic generative adversarial network-based multispectral satellite images with improved sharpness. J. Appl. Remote Sens. 2024, 18, 014510. [Google Scholar] [CrossRef]
- City Does Not Exist. Available online: https://thiscitydoesnotexist.com/ (accessed on 30 March 2022).
- Hinton, G.E.; Zemel, R. Autoencoders, Minimum Description Length and Helmholtz Free Energy. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Denver, CO, USA, 30 November–3 December 1993. [Google Scholar]
- Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. arXiv 2019, arXiv:abs/1906.02691. [Google Scholar]
- van den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural Discrete Representation Learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; pp. 6309–6318. [Google Scholar]
- Razavi, A.; van den Oord, A.; Vinyals, O. Generating Diverse High-Fidelity Images with VQ-VAE-2. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates Inc.: Red Hook, NY, USA, 2019. [Google Scholar]
- Gragnaniello, D.; Cozzolino, D.; Marra, F.; Poggi, G.; Verdoliva, L. Are GAN Generated Images Easy to Detect? A Critical Analysis of the State-Of-The-Art. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, ICME 2021, Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
Dataset | Bands | Size | Architecture | Transfer Type | Total # Pristine Source: Sentinel2-level1C | Total # GAN |
---|---|---|---|---|---|---|
Land Cover (LC) | 13 | 512 × 512 | CycleGAN | Land Cover | 30,000 | 4000 |
Scandinavian (Scand) | 13 | 512 × 512 | Pix2pix | Season | 17,044 | 4000 |
China | 13 | 512 × 512 | Pix2pix | Season | 16,000 | 4000 |
Alps | 13 | 512 × 512 | – | – | 7872 | 0 |
This-city-does-not-exist | 3 | 1024 × 1024 | styleGAN2 | – | 0 | 140 |
Dataset | Train EfficientNet-B4 | Train VQ-VAE 2 | Test Detectors | Calibrate Threshold of Detectors |
---|---|---|---|---|
LC | 3000 P, 3000 G | 29,000 P | 1000 G | 100 P |
Scand | 3000 P, 3000 G | – | 1000 G | 100 P |
China | 3000 P, 3000 G | 15,000 P | 1000 G | 100 P |
Alps | – | 7872 P | – | – |
This-city-does-not-exist | – | – | 140 G | – |
[email protected] FAR | Test | ||||
---|---|---|---|---|---|
LC | Scand | China | |||
Train | LC | eff_down | 1 | 0.8 | 0.7 |
eff_nodown | 1 | 1 | 0.82 | ||
Scand | eff_down | 0.61 | 1 | 0.65 | |
eff_nodown | 0.73 | 1 | 0.74 | ||
China | eff_down | 0.66 | 0.68 | 1 | |
eff_nodown | 0.71 | 0.75 | 1 | ||
LC & Scand | eff_down | 1 | 1 | 0.6 | |
eff_nodown | 1 | 1 | 0.86 |
BANDS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8a | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LC | 0.94 | 0.88 | 0.9 | 0.55 | 0.83 | 0.92 | 0.99 | 0.7 | 0.99 | 0.98 | 0.99 | 1 | 1 |
Scand | 0.98 | 0.64 | 0.51 | 0.95 | 1 | 0.97 | 0.98 | 0.97 | 0.99 | 1 | 0.99 | 0.97 | 0.99 |
China | 0.99 | 0.98 | 0.99 | 0.98 | 1 | 0.98 | 0.99 | 0.73 | 0.99 | 0.99 | 0.54 | 1 | 1 |
Mixed data | 0.85 | 0.86 | 0.6 | 0.81 | 0.92 | 0.95 | 0.98 | 0.7 | 0.99 | 0.98 | 0.85 | 1 | 1 |
Metrics | VQ-VAE 2 (Red) | VQ-VAE 2 (Blue) | VQ-VAE 2 ( Green) | EfficientNetB4 (Trained on 3 Bands) |
---|---|---|---|---|
[email protected] FAR | 1 | 1 | 0.96 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abady, L.; Dimitri, G.M.; Barni, M. A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images. Remote Sens. 2024, 16, 781. https://doi.org/10.3390/rs16050781
Abady L, Dimitri GM, Barni M. A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images. Remote Sensing. 2024; 16(5):781. https://doi.org/10.3390/rs16050781
Chicago/Turabian StyleAbady, Lydia, Giovanna Maria Dimitri, and Mauro Barni. 2024. "A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images" Remote Sensing 16, no. 5: 781. https://doi.org/10.3390/rs16050781
APA StyleAbady, L., Dimitri, G. M., & Barni, M. (2024). A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images. Remote Sensing, 16(5), 781. https://doi.org/10.3390/rs16050781