A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring
Abstract
:1. Introduction
2. Methods
2.1. A New Flash Drought Identification Method
2.1.1. Evaporative Stress Percentile (ESP)
2.1.2. Flash Drought Identification Criteria
- (1)
- Onset: the ESP declines from above the 40th percentile to below the 20th percentile with an average decline rate of no less than the 6.5 percentile/week.
- (2)
- Termination: the flash drought ends when the ESP value rises above the 20th percentile and persists for at least two weeks.
- (3)
- Duration: flash droughts should last for at least 3 weeks.
2.2. Flash Drought Characteristics by the ESP
- The frequency of flash drought: the total number of flash drought events in the selected study period.
- The duration of flash drought: the number of days from the rapid onset of the ESP decline to recovery, i.e., in Figure 2.
- The rate of intensification (RI): the average rate of decline in the ESP during the FDOD, which is a critical characteristic for distinguishing flash droughts from conventional droughts. The rate of intensification (RI) (percentile/week) of a flash drought event is calculated as follows:
2.3. Compared with Other Drought Indices
2.4. Accuracy Assessment
3. Materials and Study Area
3.1. Datasets
3.1.1. GLDAS-Noah Dataset
3.1.2. China Meteorological Forcing Dataset
3.1.3. MODIS NDVI Data
3.1.4. Land Use and Land Cover Data
3.1.5. The Global Aridity Index Database
3.2. Study Area
4. Results
4.1. Evaluation of the ESP against SMP
4.2. Performance of the ESP in Monitoring Flash Droughts
4.2.1. Identification of Flash Drought Events in Different Climatic Regions in China Using the ESP
4.2.2. Temporal Evolution and Associated Meteorological Conditions
4.3. Comparison with the Vegetation Index-Based Drought Index
4.4. Analysis of Historical Flash Droughts in China Using an ESP-Based Approach
5. Discussion
5.1. Advantages of Using an ESP-Based Approach
5.2. Uncertainty and Limitations of the Current Study
6. Conclusions
- (1)
- The ESP has a good performance in terms of capturing dry and wet variations across most of China during the growing season, which is in good agreement with the SMP. A weaker correlation is also found in some regions, such as high-altitude cold regions and forest regions.
- (2)
- Case studies successfully demonstrated the robustness of the ESP-based method for identifying flash drought events and monitoring their temporal evolution across different geographic regions, land cover types, and climate regimes. It also indicates that in addition to the precipitation deficit, other meteorological conditions, such as solar radiation, air temperature, and atmospheric water demand, play significant roles in the evolution of flash droughts. The response of the land surface to the drought is also relevant to the land cover types. Wind was not strongly associated with flash droughts.
- (3)
- By applying the ESP-based approach, the spatial distributions of the frequency, duration, and rate of intensification of historical flash droughts in China for 1979–2018 were analyzed, and the results showed that flash droughts occurred 2 to 8 times per decade and were most frequent in the transitional climate zone between humid and arid regions in Northern China. The duration of flash droughts in China for 1979–2018 ranged from 25 to 50 days, and the average rate of intensification ranged from 15 to 35 percentile/week. Forested areas experienced fewer flash droughts (i.e., 2~4 events/decade), longer average durations, and weaker rates of intensification than croplands, suggesting that forests are generally more resilient to drought.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, V.; Aadhar, S.; Mahto, S.S. Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. NPJ Clim. Atmos. Sci. 2021, 4, 1. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Koster, R.D.; Schubert, S.D.; Wang, H.; Mahanama, S.P.; DeAngelis, A.M. Flash Drought as Captured by Reanalysis Data: Disentangling the Contributions of Precipitation Deficit and Excess Evapotranspiration. J. Hydrometeorol. 2019, 20, 1241–1258. [Google Scholar] [CrossRef]
- Nguyen, H.; Wheeler, M.C.; Otkin, J.A.; Cowan, T.; Frost, A.; Stone, R. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 2019, 14, 064016. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Andersoson, M.C.; Hain, C.; Basara, J.B. FLASH DROUGHTS A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Precipitation Deficit Flash Droughts over the United States. J. Hydrometeorol. 2016, 17, 1169–1184. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.B.; Li, Y.H.; Huang, J.P.; Ma, Z.G.; Wang, Z.L.; Wang, S.P.; Wang, Y.; Zhang, Y. Causes and Changes of Drought in China: Research Progress and Prospects. J. Meteorol. Res. 2020, 34, 460–481. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, Z.G.; Pan, M.; Shi, C.X. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 2015, 42, 4394–4401. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, M.X.; Ma, Z.G.; Jian, D.N.; Lv, M.X.; Yang, Q.; Duan, Y.W.; Amin, D. The intensification of flash droughts across China from 1981 to 2021. Clim. Dyn. 2023, 62, 1233–1247. [Google Scholar] [CrossRef]
- Qing, Y.; Wang, S.; Ancell, B.C.; Yang, Z.-L. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity. Nat. Commun. 2022, 13, 1139. [Google Scholar] [CrossRef]
- Fu, K.Q.; Wang, K.C. Quantifying Flash Droughts Over China From 1980 to 2017. J. Geophys. Res. Atmos. 2022, 127, e2022JD037152. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.M.; Ji, P.; Wu, P.L.; Sheffield, J.; Otkin, J.A. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Yuan, X. Anthropogenic Speeding Up of South China Flash Droughts as Exemplified by the 2019 Summer-Autumn Transition Season. Geophys. Res. Lett. 2021, 48, e2020GL091901. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.E.; Basara, J.B.; Svoboda, M. Examining Rapid Onset Drought Development Using the Thermal Infrared-Based Evaporative Stress Index. J. Hydrometeorol. 2013, 14, 1057–1074. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Dominance of summer monsoon flash droughts in India. Environ. Res. Lett. 2020, 15, 104061. [Google Scholar] [CrossRef]
- Ford, T.W.; McRoberts, D.B.; Quiring, S.M.; Hall, R.E. On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett. 2015, 42, 9790–9798. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Ren, L.L.; Otkin, J.; Hunt, E.D.; Yang, X.L.; Yuan, F.; Jiang, S.H. Two Different Methods for Flash Drought Identification: Comparison of Their Strengths and Limitations. J. Hydrometeorol. 2020, 21, 691–704. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Zhang, L.; Ren, L.; Yuan, F.; Yang, X.; Jiang, S. Flash droughts characterization over China: From a perspective of the rapid intensification rate. Sci. Total Environ. 2020, 704, 135373. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.W.; Labosier, C.F. Meteorological conditions associated with the onset of flash drought in the Eastern United States. Agric. For. Meteorol. 2017, 247, 414–423. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 2019, 10, 4661. [Google Scholar] [CrossRef] [PubMed]
- Otkin, J.A.; Zhong, Y.F.; Hunt, E.D.; Christian, J.I.; Basara, J.B.; Nguyen, H.; Wheeler, M.C.; Ford, T.W.; Hoell, A.; Svoboda, M.; et al. Development of a Flash Drought Intensity Index. Atmosphere 2021, 12, 741. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D.; Wakefield, R.A.; Flanagan, P.X.; Xiao, X.M. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. J. Hydrometeorol. 2019, 20, 833–846. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Svoboda, M. Examining the Relationship between Drought Development and Rapid Changes in the Evaporative Stress Index. J. Hydrometeorol. 2014, 15, 938–956. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.L.; Wu, X.S.; Chen, J.; Guo, S.L.; Zhang, Z.X. A new framework for tracking flash drought events in space and time. Catena 2020, 194, 104763. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.L.; Wu, X.S.; Xu, C.Y.; Guo, S.L.; Chen, X.H. Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. J. Hydrometeorol. 2020, 21, 891–908. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D. Regional characteristics of flash droughts across the United States. Environ. Res. Commun. 2019, 1, 125004. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Furtado, J.C.; Mishra, V.; Xiao, X.; Randall, R.M. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 2021, 12, 6330. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Hoerling, M.; Hoffmann, D.; et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 2020, 10, 191–199. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Zheng, C.L.; Jia, L.; Hu, G.C. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Hu, G.C.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Gou, Q.; Zhu, Y.; Lü, H.; Horton, R.; Yu, X.; Zhang, H.; Wang, X.; Su, J.; Liu, E.; Ding, Z.; et al. Application of an improved spatio-temporal identification method of flash droughts. J. Hydrol. 2022, 604, 127224. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Hobbins, M.T.; Wood, A.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part II: CONUS-Wide Assessment against Common Drought Indicators. J. Hydrometeorol. 2016, 17, 1763–1779. [Google Scholar] [CrossRef]
- Basara, J.B.; Christian, J.I.; Wakefield, R.A.; Otkin, J.A.; Hunt, E.H.; Brown, D.P. The evolution, propagation, and spread of flash drought in the Central United States during 2012. Environ. Res. Lett. 2019, 14, 084025. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef]
- Osman, M.; Zaitchik, B.F.; Badr, H.S.; Christian, J.I.; Tadesse, T.; Otkin, J.A.; Anderson, M.C. Flash drought onset over the contiguous United States: Sensitivity of inventories and trends to quantitative definitions. Hydrol. Earth Syst. Sci. 2021, 25, 565–581. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrol. Earth Syst. Sci. 2020, 24, 5579–5593. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Otkin, J.A. Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China. Carbon Balance Manag. 2020, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Xia, J.; She, D.X.; Li, L.C.; Song, Z.H.; Hong, S. A new framework for the identification of flash drought: Multivariable and probabilistic statistic perspectives Identification of flash drought. Int. J. Clim. Climatol. 2021, 41, 5862–5878. [Google Scholar] [CrossRef]
- Jia, L.; Hu, G.; Zhou, J.; Menenti, M. Assessing the sensitivity of two new indicators of vegetation response to water availability for drought monitoring. In Land Surface Remote Sensing; SPIE: St. Bellingham, WA, USA, 2012; pp. 192–206. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Gong, Z.H.; Zhu, J.; Li, T.T.; Huang, D.Q.; Chen, X.Y.; Zhang, Q. The features of regional flash droughts in four typical areas over China and the possible mechanisms. Sci. Total Environ. 2022, 827, 154217. [Google Scholar] [CrossRef] [PubMed]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Yang, K.; He, J.; Qin, J.; Shi, J.C.; Du, J.Y.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic Analysis of Time Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [Google Scholar] [CrossRef]
- Zhou, J.; Menenti, M.; Jia, L.; Gao, B.; Zhao, F.; Cui, Y.L.; Xiong, X.Q.; Liu, X.; Li, D.C. A scalable software package for time series reconstruction of remote sensing datasets on the Google Earth Engine platform. Int. J. Digit. Earth 2023, 16, 988–1007. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.J.; Chen, F.; Ban, Y.F.; Li, S.N.A.; Han, G.; Tong, X.H.; Liu, C.; Stamenova, V.; Stamenov, S. Collaborative validation of GlobeLand30: Methodology and practices. Geo-Spat. Inf. Sci. 2021, 24, 134–144. [Google Scholar] [CrossRef]
- Jingzhen, M.A.; Sun, Q.; Qiang, X.I.O. Accuracy Assessment and Comparative Analysis of GlobeLand30 Dataset in Henan Province. J. Geo-Inf. Sci. 2016, 18, 1563–1572. [Google Scholar]
- Cai, L.P.; Wang, S.S.; Jia, L.Z.; Wang, Y.J.; Wang, H.; Fan, D.L.; Zhao, L. Consistency Assessments of the Land Cover Products on the Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5652–5661. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.C.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- UNEP. World Atlas of Desertification; Edward Arnold: Sevenoaks, UK, 1992; p. 69. [Google Scholar]
- Wang, L.Y.; Yuan, X. Two Types of Flash Drought and Their Connections with Seasonal Drought. Adv. Atmos. Sci. 2018, 35, 1478–1490. [Google Scholar] [CrossRef]
- van Hoek, M.; Zhou, J.; Jia, L.; Lu, J.; Zheng, C.L.; Hu, G.C.; Menenti, M. A prototype web-based analysis platform for drought monitoring and early warning. Int. J. Digit. Earth 2020, 13, 817–831. [Google Scholar] [CrossRef]
- Li, M.X.; Ma, Z.G.; Gu, H.P.; Yang, Q.; Zheng, Z.Y. Production of a combined land surface data set and its use to assess land-atmosphere coupling in China. J. Geophys. Res. Atmos. 2017, 122, 948–965. [Google Scholar] [CrossRef]
- Zhang, Q.; Yue, P.; Zhang, L.; Wang, S.; Zhang, J.; Zhao, J.H.; Wang, R.Y.; Yang, F.L. Land-atmosphere interaction over the summer monsoon transition zone in China: A review and prospects. Acta Meteorol. Sin. 2019, 77, 758–773. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yuan, X. Land-atmosphere coupling speeds up flash drought onset. Sci. Total Environ. 2022, 851, 158109. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; You, Q.L.; Chen, C.C.; Li, X. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. J. Hydrol. 2017, 551, 162–176. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Liu, Y.; Ren, L.L.; Teuling, A.J.; Zhu, Y.; Wei, L.Y.; Zhang, L.Y.; Jiang, S.H.; Yang, X.L.; Fang, X.Q.; et al. Analysis of flash droughts in China using machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 3241–3261. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Otkin, J.A.; Ji, P. Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environ. Res. Lett. 2022, 17, 054041. [Google Scholar] [CrossRef]
- Chen, L.; Ford, T.W.; Yadav, P. The Role of Vegetation in Flash Drought Occurrence: A Sensitivity Study Using Community Earth System Model, Version 2. J. Hydrometeorol. 2021, 22, 845–857. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Wood, A.; McEvoy, D.J.; Huntington, J.L.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- Parker, T.; Gallant, A.; Hobbins, M.; Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 2021, 16, 064033. [Google Scholar] [CrossRef]
- Poonia, V.; Goyal, M.K.; Jha, S.; Dubey, S. Terrestrial ecosystem response to flash droughts over India. J. Hydrol. 2022, 605, 127402. [Google Scholar] [CrossRef]
- Zheng, C.L.; Jia, L.; Hu, G.C.; Lu, J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sens. 2019, 11, 138. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Global Flash Drought Analysis: Uncertainties from Indicators and Datasets. Earths Future 2022, 10, e2022EF002660. [Google Scholar] [CrossRef]
- Yao, T.T.; Liu, S.X.; Hu, S.; Mo, X.G. Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019. J. Environ. Manag. 2022, 313, 114947. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, H.; Liang, S.L.; Zhou, T.; He, B.; Tang, B.J.; Wu, D.H. Responses of Natural Vegetation to Different Stages of Extreme Drought during 2009–2010 in Southwestern China. Remote Sens. 2015, 7, 14039–14054. [Google Scholar] [CrossRef]
- Li, X.; Piao, S.; Huntingford, C.; Penuelas, J.; Yang, H.; Xu, H.; Chen, A.; Friedlingstein, P.; Keenan, T.F.; Sitch, S.; et al. Global variations in critical drought thresholds that impact vegetation. Natl. Sci. Rev. 2023, 10, nwad049. [Google Scholar] [CrossRef] [PubMed]
Categorization | No Drought | Mild Drought | Moderate Drought | Severe Drought | Extreme Drought |
---|---|---|---|---|---|
ESP Value (%) | >30 | 21–30 | 11–20 | 6–10 | 1–5 |
Region A | Region B | Region C | |
---|---|---|---|
Location | Western Jilin | Southern Hebei | Northern Hunan |
Climate | Sub-humid and semi-arid climate | Semi-arid climate | Humid climate |
Mean annual precipitation (mm) | 300 to 700 | 500 to 800 | 1000 to 2000 |
Major land cover type | Cropland and grass | Cropland | Cropland and forest |
Main crops | Corn, wheat, potato | Wheat, corn, soybean | Rice, corn, potato |
Drought year | 2015 | 2010 | 2013 |
Agricultural loss due to drought (billion dollars) | 0.5 | 0.5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Jia, L.; Lu, J.; Jiang, M.; Zheng, C. A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sens. 2024, 16, 780. https://doi.org/10.3390/rs16050780
Li P, Jia L, Lu J, Jiang M, Zheng C. A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sensing. 2024; 16(5):780. https://doi.org/10.3390/rs16050780
Chicago/Turabian StyleLi, Peng, Li Jia, Jing Lu, Min Jiang, and Chaolei Zheng. 2024. "A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring" Remote Sensing 16, no. 5: 780. https://doi.org/10.3390/rs16050780
APA StyleLi, P., Jia, L., Lu, J., Jiang, M., & Zheng, C. (2024). A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sensing, 16(5), 780. https://doi.org/10.3390/rs16050780