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Abstract: The current image generative models have achieved a remarkably realistic image quality,
offering numerous academic and industrial applications. However, to ensure these models are
used for benign purposes, it is essential to develop tools that definitively detect whether an image
has been synthetically generated. Consequently, several detectors with excellent performance in
computer vision applications have been developed. However, these detectors cannot be directly
applied as they areto multi-spectral satellite images, necessitating the training of new models. While
two-class classifiers generally achieve high detection accuracies, they struggle to generalize to image
domains and generative architectures different from those encountered during training. In this
paper, we propose a one-class classifier based on Vector Quantized Variational Autoencoder 2 (VQ-
VAE 2) features to overcome the limitations of two-class classifiers. We start by highlighting the
generalization problem faced by binary classifiers. This was demonstrated by training and testing
an EfficientNet-B4 architecture on multiple multi-spectral datasets. We then illustrate that the VQ-
VAE 2-based classifier, which was trained exclusively on pristine images, could detect images from
different domains and generated by architectures not encountered during training. Finally, we
conducted a head-to-head comparison between the two classifiers on the same generated datasets,
emphasizing the superior generalization capabilities of the VQ-VAE 2-based detector, wherewe
obtained a probability of detection at a 0.05 false alarm rate of 1 for the blue and red channels when
using the VQ-VAE 2-based detector, and 0.72 when we used the EfficientNet-B4 classifier.

Keywords: generative adversarial networks; variational autoencoder; EfficientNet; detection; Sentinel-2;
remote sensing

1. Introduction

Deep Learning (DL) techniques have established new State of the Art (SOTA) bench-
marks in several fields: from bioinformatics to computer vision, from natural language
processing to object detection [1–5]. In this context, the development of tools for the cre-
ation of image forgeries, on one hand, and for authenticity verification and other forensic
applications, on the other, has seen a steep increase in the use of DL techniques [6]. Among
the possible application domains, great attention is increasingly being devoted to satellite
image analysis.

Satellite images play a crucial role in various application areas, such as meteorological
forecasts, landscape analysis, agriculture, regional planning, the monitoring and detection
of natural disasters, and several others. As a result, the number of commercial satellites is
constantly growing, and the accessibility of satellite images with larger and larger ground
resolution [7] is increasing daily. As for other application domains, DL provides various
tools for manipulating satellite images. Some examples of DL-based tools for satellite
image manipulations are described in Refs. [8–10]. Such manipulations are often related
to disinformation campaigns, as reported, for instance, in [11]. Hence, there is a growing
need to develop DL forensic methods suited for the detection and identification of satellite
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image forgeries. The extension of image forensics tools developed for computer vision
applications to satellite imagery, however, has proven to be challenging from several points
of view. First of all, forensic techniques developed for non-satellite images must be adapted
to the specific content of overhead imagery. This is due to the inherently different types
of features and characteristics of conventional RGB and multi-spectral satellite images.
In addition, quite often, satellite images have more than three bands. For example, Sentinel-
2 Level 1C optical images have 13 bands, with each group of bands characterized by a
different ground sampling distance. Moreover, unlike RGB images, each pixel is typically
represented by more than 8 bits per band (12 bits in the case of Sentinel-2 Level 1C images).
On top of that, synthetically generated datasets of multi-spectral images are missing, thus
making it difficult to benchmark DL tools for satellite image forgery detection.

Over the years, Generative Adversarial Networks (GAN) have been extensively re-
searched and applied to various domains, including image generation [12,13], style trans-
fer [14,15], super-resolution [16], text-to-image synthesis [17,18], and more. Moreover,
researchers have proposed numerous variants and improvements to the original GAN
architecture, such as conditional GANs [19], Wasserstein GANs [20], cycle-consistent
GANs [21], and progressive growing GANs [22], among others. GANs have also been
used for unsupervised representation learning [23], where the generator learns to generate
data samples that capture the underlying data distribution, enabling downstream tasks
such as classification and clustering to be performed with improved accuracy. Addition-
ally, GANs have found applications beyond image generation, including in the fields
of natural language processing (NLP) [24], speech synthesis [25], and generative music
composition [26].

GANs can be successfully used to create synthetic satellite images [8]. Such architec-
tures have proven to be extremely useful for image generation or style transfer, and they
apply not only to RGB images [12,19] but also to multi-spectral images [27], with only
some minor modifications. A few works have also been proposed for the detection of
GAN-generated satellite images. In general, most of these tools are only trained on the RGB
bands of multi-spectral images and exhibit good detection capabilities when the training
and test datasets are acquired under matched conditions, but they fail to generalize to
unseen data. One tool that is actually trained on multi-spectral images but also lacks
generalization capabilities is described in [28], where the authors present a detector based
on an EfficientNet-B4 [29] model trained on multi-spectral images, achieving very good
performance. When the model was tested on a different dataset, however, the performance
declined significantly.

To overcome the generalization weakness of SOTA techniques for the detection of
GAN multi-spectral satellite images, in this work, we propose using a one-class classifier
based on a Vector Quantized Variational Autoencoder (VQ-VAE) trained only on pristine
images. Moreover, we propose using the reconstruction loss between the input and the
output images to distinguish GAN and pristine images.

We evaluated the performance of the one-class classifier on several multi-spectral
GAN synthetic Sentinel-2 level-1C satellite datasets and compared them against those
of a conventional manipulation detector based on EfficientNet-B4, which was trained on
both pristine and GAN-generated satellite images. We ran experiments on the full 13
bands of Sentinel-2 level-1C samples. The results we obtained demonstrated the superior
performance of the one-class classifier in terms of generalization capability, with only a
small performance loss compared to the two-class classifier under matched conditions.

The paper is structured as follows: in Section 2, we overview the related works in
the field of satellite imagery forgery detection. In Section 3, we describe the datasets we
created or collected, differentiating between the various models and GANs methodologies
used. In Section 4, we describe the VQ-VAE one-class classifier, and in Section 5, we present
the experimental results proving the validity of the proposed method. Finally, Section 6
concludes and offers future perspectives on our work.
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2. Related Work

In this section, we overview the prior work on satellite image forgery detection.
In [30], the authors introduced a framework composed of two steps for the detection and
localization of forgeries in satellite images. In the first step, a GAN is trained to obtain a set
of features capable of representing pristine satellite images. In the second step, a one-class
classifier based on Support Vector Machine (SVM) is applied to distinguish pristine and non-
pristine images. The method proposed in [31] is based on a conditional GAN architecture
that is trained on two domains, the first domain is the domain of spliced images, while the
second contains the forgery masks. Given a GAN image as input, a GAN generator is used
to estimate a forged mask that is as close as possible to the real one. In [32], the authors
applied an analysis similar to [30], by jointly training the auto-encoder and a support vector
data descriptor [33]. Furthermore, in [34], the authors took advantage of a one-class deep
belief network, which was employed for detecting and localizing forged images. The same
authors, in [35], proposed using a vision transformer for image reconstruction. In this
case, the forgery mask was obtained by observing the differences between the input and
output images.

A further interesting work is [36], where the heat maps of forged regions were es-
timated using a novel architecture based on a U-Net nested within a GAN architecture.
The system built in this way could localize RGB image forgeries generated by three dif-
ferent types of GANs: StyleGAN2 [37], ProGAN [22], and CycleGAN [21]. The forgeries
were created using Sentinel-2 RGB images that were spliced within the generated images.
The output of the architecture consisted of a probability mask, where each pixel was associ-
ated with the probability of having been generated by one of the specific GANs that were
tested in the experimental framework.

In [10], the authors implemented a GAN-based approach for semantic satellite image
translation. In the same work, they also presented a data-driven approach for the detection
of GAN generated images and used SVM to detect cycleGAN-generated images from a
set of features (both spatial and spectral). Furthermore, in [38], the authors relied on the
dataset presented in [5], to develop an additional method to detect RGB satellite images
that are semantically transformed, starting from the detection of high-frequency details in
the generated samples.

Most of the methods that have been proposed so far focus on RGB 8-bit images.
To the best of our knowledge, the only method that has been proposed for detecting
multi-spectral image forgeries of images with 13 bands, like those acquired by Sentinel-2
sensors, is [28], which cannot generalize to mismatched data, as we previously mentioned
in the Introduction.

3. Datasets

The datasets we used consist of two main types of images: pristine Sentinel-2 level1-C
images and GAN images generated from models trained on Sentinel-2 level1-C datasets.
The details of acquiring the pristine images and generating synthetic images can be found
in the following article [39]. The images consist of 13 bands of 512 × 512 patches. For the
generalization experiments, we collected an additional dataset, hereafter referred to as
the “this-city-does-not-exist” dataset, containing RGB images of size 1024 × 1024. A short
description of all the datasets is given in the following subsections. In addition, a summary
of all the datasets described in this section is given in Table 1.

The datasets were employed in various tasks. To start with, we needed a set of pristine
images to train the VQ-VAE 2-based detector, pristine images, and GAN images to be used
to train the 2-class EfficientNet detector, as well as GAN images to be used to test both
detectors. A small number of pristine images were used to calibrate the thresholds for
both detectors since the assessment metric we used was the probability of detection at
a false alarm rate of 0.1. Table 2 shows how we split the images of the various datasets
across different tasks. For VQ-VAE 2 training, only pristine images were used to train a
single one-class detector. For EfficientNet-B4, the training images were used to train several
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versions of the detectors, each time using a different combination of the training sets (see
Section 5.1). The images used for testing were never used during training.

Table 1. Summary of the datasets used in our work (see Section 3).

Dataset Bands Size Architecture Transfer Type Total # Pristine
Source: Sentinel2-level1C Total # GAN

Land Cover (LC) 13 512 × 512 CycleGAN Land Cover 30,000 4000

Scandinavian (Scand) 13 512 × 512 Pix2pix Season 17,044 4000

China 13 512 × 512 Pix2pix Season 16,000 4000

Alps 13 512 × 512 – – 7872 0

This-city-does-not-exist 3 1024 × 1024 styleGAN2 – 0 140

Table 2. Summary of the number of images used for each task. P indicates pristine images and G
denotes GAN-generated images.

Dataset Train
EfficientNet-B4 Train VQ-VAE 2 Test Detectors

Calibrate
Threshold of

Detectors
LC 3000 P, 3000 G 29,000 P 1000 G 100 P

Scand 3000 P, 3000 G – 1000 G 100 P

China 3000 P, 3000 G 15,000 P 1000 G 100 P

Alps – 7872 P – –

This-city-does-
not-exist – – 140 G –

3.1. Land Cover (LC) Transfer Datasets

The first dataset was the land cover (LC) transfer dataset. This dataset was formed of
two classes of images: pristine and GAN images. As indicated in Table 2, 29,000 pristine
images were used to train the VQ-VAE 2 image detector and 1000 images were set aside
for testing. For training the EfficientNet-B4 detector, we used 3000 pristine images and
3000 generated images, and tested on 1000 GAN and 1000 pristine images, while 100
pristine images were used for threshold calibration. Figure 1a shows two examples from
the pristine LC dataset. Figure 1b, instead, shows two examples of images generated by
the cycleGAN.

Barren to Vegetation Summer to Winter Summer to Winter

Vegetation to Barren Winter to Summer Winter to Summer
(a) (b) (c) (d) (e) (f)

Figure 1. Some examples of the images contained in the datasets used throughout the paper. Only
the RGB bands are shown. (a) LC-Pristine; (b) LC-GAN; (c) China-Pristine; (d) China-GAN; (e) Scand-
Pristine; (f) Scand-GAN.
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3.2. China and Scandinavian Season Transfer Datasets

The China and Scandinavian (Scand) Season Transfer datasets are another example
of image-to-image GAN image generation. For each dataset, we used 6000 images to
train the EfficientNet-B4 detector, 100 pristine images were used for threshold calibration,
and 1000 GAN images were used to test the two detectors. In addition, 15,000 pristine
images from the pristine China dataset (excluding the images that were used for calibration
and testing) are used as part of the VQ-VAE 2 training dataset. Figure 1c shows two
examples of pristine images, while Figure 1d shows two examples of GAN-generated
images. Figure 1e,f show two examples of pristine and GAN images.

3.3. Alps Dataset

The Alps dataset is a pristine image dataset that was collected to help train the VQ-VAE
2 detector. We collected images from the same area in two different months, with each
month representing a different season (June 2019 for summer and December 2019 for
winter). To avoid generating images with clouds, we selected images with limited cloud
cover. Since it was not possible to obtain images with 0% cloud cover, we limited the
search to images with cloud cover less than 9%. As a result, we obtained a dataset with
7872 pristine images. Figure 2a shows an RGB representation of two examples of the
Alps dataset.

(a) (b)
Figure 2. Examples of images taken from this-city-does-not-exit and Alps datasets, where for the
Alps dataset only RGB bands are shown. (a) Alps dataset. (b) This-city-does-not-exist.

3.4. This-City-Does-Not-Exist Dataset

This dataset was used to test the ability of the various models to generalize to images
generated from unknown architectures and with completely different contents. It contains
only GAN images downloaded from [40]. The images were generated using a styleGAN2
model. We collected 140 images of size 1024 × 1024. The images of this dataset have only
three bands (RGB). Figure 2b, shows two examples of the this-city-does-not-exist dataset.

4. The VQ-VAE 2 One-Class Classifier

In this section, we describe the one-class classifier we developed to distinguish pristine
and GAN multi-spectral images. We start with a brief introduction to autoencoders and
variational autoencoders, then we describe the VQ-VAE 2 architecture, which is the one
our system relies on.

A neural network A that is trained to reconstruct its input at the output is referred
to as an autoencoder [41]. The reconstruction is constrained in such a way as to prevent
learning the identity function. An autoencoder is divided into two main parts:

• The encoder Ae, mapping the input x onto a hidden representation h (i.e., h = Ae(x)).
• The decoder Ad, reconstructing an approximate version of the input x̃ from the hidden

representation (i.e., x̃ = Ad(h)).

In the case of tensor data, the input can be an image x and the hidden representation
a vector h. The encoder and decoder are trained jointly to reduce the reconstruction loss,
usually a L2 loss term, between the input and output samples.
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In Variational Autoencoders (VAEs) [42], the input is encoded into a vectorial represen-
tation, and the hidden representation’s features are forced to follow a Gaussian distribution
that is denoted by N ( f (x); g(x)), where f (·) denotes the mean and g(·) denotes the vari-
ance of the distribution. A sample of the hidden representation is taken during the decoding
stage and is utilized as input to the decoder, which produces a reconstructed version of
the original input data. When the hidden features are required to follow a Gaussian
distribution, the total loss that is used during training is equal to

L(x, x̃) = ∥x − x̃∥2
2 + βLKL(N ( f (x), g(x)),N (0, Id)), (1)

where the first term is a “data fidelity term” that measures the difference between the input
sample x and the estimated sample x̃, the second term applies a kind of “regularization”
by requiring the network to minimize the Kullback–Leibler divergence LKL between the
learned hidden variable distribution and a desired normal distribution N (0; Id) (here, Id is
the identity matrix), and β is a hyperparameter balancing the two loss terms. The decoder
is used to create new images by selecting random samples from the hidden layer after
training the VAE.

VQ-VAE [43] is a variant of VAE that uses vector quantization to learn a discrete latent
representation instead of a continuous one. This is done by adding a discrete codebook
component to the network that contains the list of vectors with their indices. Then, the
output of the encoder is compared with all the codebook entries in terms of Euclidean
distance, and the code that is closer to the output of the encoder is fed to the decoder.
In VQ-VAE, compared to a VAE, the priors are learned rather than taken as static input.
The combination of a discrete latent representation and an autoregressive prior thus paves
the way for the generation of high-quality images, videos, and speech.

VQ-VAE 2 [44] is similar to VQ-VAE, with the only difference being that it uses
multi-scale latent maps to increase the resolution of the reconstructed image. In our
experiments, we used three levels of latent maps and only relied on a static prior instead
of an autoregressive prior, since our goal was to detect GAN images rather than generate
them. Figure 3 shows the architecture we used, where we opted for a three-level hierarchy:
bottom, middle, and top, with latent space sizes of 512, 128, and 64, respectively. The
input to the architecture is one of the bands of the pristine image and the output is the
reconstructed version of the input.

Concerning the detection of GAN images, we used the VQ-VAE 2 architecture accord-
ing to two different modalities. In the first approach, the autoencoder processes all 13 bands
together (the resulting architecture is referred to as VQ-VAE 213. For the second approach,
we trained one model per band (referred to as VQ-VAE 21). The reconstruction loss on all
bands and the total reconstruction loss on all bands were used as features to be processed
by an anomaly detection module, e.g., a one-class SVM. Based on the experiments we
carried out (see Section 5.2), we decided to use the reconstruction loss directly and detect
the GAN images by applying a threshold to the reconstruction error band-by-band.

512x512x256

512x512x256Encoder -
Bottom

128x128x256

128x128x256

Encoder
- Middle

64x64x256

Encoder
- Top

Output Band
Decoder -

Bottom

512x512x1

Decoder
- Middle

128x128x1 

Decoder
- Top

512x512x1

64x64x128Vector
quantization

128x128x128

128x128x128Vector
quantization

512x512x128

Vector
quantization

Figure 3. VQ-VAE 2 Architecture.
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5. Experiments and Results

In this section, we evaluate the performance of the proposed VQ-VAE 2 and empirically
prove that an off-the-shelf 2-class detector based on EfficientNet-B4 lags behind the VQ-
VAE 2 in terms of generalization capabilities. Both detectors were trained and tested with
the datasets described in Section 3.

5.1. EfficientNet-B4 Detector

As a baseline 2-class detector to benchmark the performance of our system, we trained
several models based on the EfficientNet architecture. The EfficientNet class of networks
was proposed as a way to efficiently scale the network depth, width, and resolution based
on the input dimensions [29]. In our experiments, we used EfficientNet-B4 (eff_down),
with hyper-parameters set as in [29], the only exception being the difference in the input
size, which we adapted to match the number of channels our images consisted of (13).
We built four different models by training the networks on the LC dataset (thus fitting
to cycleGAN data), the Scandinavian dataset (adapting the model to distinguish pix2pix
images), the China dataset, and a combination of the LC and Scandinavian datasets. The
four models were cross-tested on the LC, Scandinavian, and China datasets. We also trained
three additional models, this time by removing the downsampling from the initial layer, as
suggested by [45], to enhance the generalization capabilities of the model. We called these
models EfficientNet-B4 with no down (eff_nodown). Augmentation, including Gaussian
blur, random shift, random rotation, and random flip, was applied to train all models.

The results we obtained on the various datasets are shown in Table 3, reporting the
correct detection probability at a false alarm rate equal to 0.1. For threshold calibration,
for each test, we used 100 pristine images from the dataset to be tested. We also obtained
other results that we do npt report here using different thresholds, where we obtained the
thresholds from 100 pristine images from the corresponding training dataset. However,
the conclusions drawn were the same.

As expected, the probability of detection was very good when the datasets used for
training and testing were matched; that is, when the GAN images were generated by
the same GAN model used for training. Concerning generalization, we observed that the
eff_nodown architecture had better generalization capabilities. In any case, the performance
dropped when the models were tested on images taken from datasets that were not used
during training. The best results were obtained by training the detector on images generated
by both pix2pix and cycleGAN. Even in this case, however, the performance deteriorated
when the detector was tested on the images of the China dataset that had not been used
during training.

Table 3. EfficientNet-B4 correct detection probability (Pd) (false alarm rate (FAR) was set to 0.1).

Pd@0.1 FAR
Test

LC Scand China

Train

LC
eff_down 1 0.8 0.7

eff_nodown 1 1 0.82

Scand
eff_down 0.61 1 0.65

eff_nodown 0.73 1 0.74

China
eff_down 0.66 0.68 1

eff_nodown 0.71 0.75 1

LC & Scand
eff_down 1 1 0.6

eff_nodown 1 1 0.86
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5.2. Vector Quantized Variational Autoencoder 2

To build the VQ-VAE 2 one-class classifiers, we trained a VQ-VAE 213 model working
on all bands together, and 13 VQ-VAE 21 models, each working on one different band.
The models were trained on 50000 pristine Sentinel 2 level-1C images collected from the
Alps, China, and land cover datasets. The networks were trained for 100 epochs, with early
stopping and a batch size equal to 64.

Some initial insights into the discrimination capability of the VQ-VAE 2 models
could be obtained by plotting the reconstruction losses obtained, applying the trained
autoencoders to the various datasets. To obtain the scatter plots shown in Figure 4, we
applied principle component analysis (PCA) to reduce the feature dimensionality to 2.
The scatter plots obtained using the models trained on VQ-VAE 213 and VQ-VAE 21 are
reported for two datasets: the China dataset, whose pristine images are part of the VQ-VAE
2 training dataset, and the Scandinavian dataset, that was never seen by the VQ-VAE 2. We
can observe that, in both cases, pristine and GAN images are grouped into well-distinct
clusters; however, the features are further apart in the case where the reconstruction losses
were taken from the 13 models of VQ-VAE 21. Hence, the rest of our experiments were
carried out by training one model per band.

(a) (b)
Figure 4. Scatter plot after PCA feature reduction for GAN and pristine image datasets. (a) VQ-VAE
2 trained on 13 bands. (b) VQ-VAE 2 trained band by band.

Given that 13 single-band trained autoencoders, we used the reconstruction error of
each autoencoder to detect the GAN images. To do so, we set the detection threshold by
fixing the false alarm rate on 100 pristine images for each testing dataset to 0.1. Similarly to
the EfficientNet-B4 results, we also experimented with obtaining the threshold from the
training dataset, which in this experiment was obtained from the China and LC datasets.
The results, we obtained were slightly worse for the 10 m bands but were comparable for
the rest of the bands.

The tests were carried out on the LC, Scand, and China datasets, as well as on all
the datasets mixed together. Table 4 shows the results we obtained. The correct detection
probability was very good for most of the bands, with some room for improvement for the
R (band 4), G (band 3), B (band 2), and NIR (band 8) bands. The results in Table 4 show the
excellent generalization capability of the VQ-VAE 2-based detectors, as they could detect the
GAN images even in the Scand dataset (whose pristine images were not part of the training
dataset) by looking at any of the bands except bands 2 and 3. In particular, the detectors
based on bands 7, 8a, 9, 11, and 12 achieved nearly perfect results for all datasets.

Table 4. Correct detection probability at a 0.1 false alarm rate using VQ-VAE 2 for the 13-band datasets.

BANDS 1 2 3 4 5 6 7 8 8a 9 10 11 12

LC 0.94 0.88 0.9 0.55 0.83 0.92 0.99 0.7 0.99 0.98 0.99 1 1

Scand 0.98 0.64 0.51 0.95 1 0.97 0.98 0.97 0.99 1 0.99 0.97 0.99

China 0.99 0.98 0.99 0.98 1 0.98 0.99 0.73 0.99 0.99 0.54 1 1

Mixed data 0.85 0.86 0.6 0.81 0.92 0.95 0.98 0.7 0.99 0.98 0.85 1 1
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5.3. Comparison on the City-Does-Not-Exist Dataset

To further test the generalization capabilities of the various detectors, we used the
“this-city-does-not-exist” dataset. The reasons for this choice were twofold. The first reason
was that these images were generated by styleGAN 2, which is an architecture that was
not used in our experiments. The second reason was that the VQ-VAE 2 autoencoder was
trained on the same pristine images as the GAN architectures, while for the “this-city-
does-not-exist” dataset, the GAN training dataset was unknown to us (and surely different
from that we used to train the autoencoder). To carry out these experiments, we trained
an EfficientNet-B4 no down detector on the LC and Scand datasets, but using only the
3 RGB channels. As for the VQ-VAE 2, we used the same single-band models that had
been trained before (of course in this case we had to use only the detectors working on
the R, G, and B bands). The detection thresholds of all detectors were fixed by using a set
of pristine Sentinel-2 images, the same 100 we had used before in the case of the LC and
Scand datasets, this time targeting a false alarm rate equal to 0.05.

The results of these experiments are shown in Table 5. As we can see, the VQ-VAE 2
detector provided much better results than EfficientNet-B4, which was not able to properly
detect the images generated from scratch by the styleGAN 2 generator. This was not the case
with the VQ-VAE 2 detector, which could detect the styleGAN 2 images without retraining.

Table 5. Correct detection probability at a 0.05 false alarm rate on the “this-city-does-not-exist” dataset.

Metrics VQ-VAE 2
(Red)

VQ-VAE 2
(Blue)

VQ-VAE 2
( Green)

EfficientNetB4
(Trained on 3 Bands)

Pd@0.05 FAR 1 1 0.96 0.72

6. Conclusions

We introduced a one-class detector of GAN multi-spectral images generated by a
variety of DL architectures. The model is based on a VQ-VAE 2 autoencoder and was
trained only on pristine images. To the best of our knowledge, this is the first work
proposing the use of a one-class classifier to detect 13-band Sentinel-2 level-1C artificially
generated images.

We ran experiments on images that had been generated by cycleGAN and pix2pix ar-
chitectures. The results we obtained are particularly promising. In particular, the proposed
detector exhibited a superior generalization capability than a baseline 2-class detector based
on EfficientNet-B4. To evaluate the generalization capability in extreme conditions, we
tested the detector on a small dataset of RGB satellite images generated by styleGAN 2.
The proposed detector outperformed the two-class classifier by a wide margin. Further
work could be performed to diversify the generative models that were used to create the
satellite images, to include additional GAN and diffusion models.
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