Estimation of Forest Residual Biomass for Bioelectricity Utilization towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images: A Case Study of Aizu Region of Fukushima, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing and Classification
2.3. Estimation and Mapping of Residual Woody Biomass
2.3.1. Trunk Volume Estimation
2.3.2. Trunk Volume Data Preparation
2.3.3. Estimation of Forest Residual Biomass
2.3.4. Available Bioelectricity Potential
- (1)
- Because the national average woody material collection radius is 50 km [87], which is also the operating radius of the towable wood chippers that are adopted by most of the small scale power plants, the area within 50 km was set as the maximum biomass-collection buffer radius to the Green Energy Aizu Power Plant.
- (2)
- Under the distance reachable by lumber-collecting machinery, the distance from the center of each unit of each forest land unit (forest compartment) to the nearest road was set at no more than 500 m.
- (3)
- The slope of land was set at no more than 35° due to difficulties in logging/thinning, collecting, and transporting operations. Moreover, many areas with slopes greater than 35° are classified as protected land to prevent natural disasters such as landslides and soil erosion.
- (4)
- Forests in which cutting was forbidden were not included, as local government has strict land-use rules to protect national parks or lands that are at a high risk of natural disasters.
3. Results
3.1. Forest Cover Mapping
3.2. Spatial Analysis of Forest Residual Biomass
3.2.1. Analysis of Thinned Residue Biomass
3.2.2. Analysis of Logging Residue Biomass
3.2.3. Estimation of Potential Bioelectricity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Development Programme. Access to Energy and Human Development. 2008. Available online: https://hdr.undp.org/system/files/documents/gayeamiepdf.pdf (accessed on 20 January 2022).
- Harvey, F. ‘Carbon bubbble’ poses serious threat to UK economy, MPs warn. The Guardian, 6 March 2014. [Google Scholar]
- Mercure, J.-F.; Pollitt, H.; Viñuales, J.E.; Edwards, N.R.; Holden, P.B.; Chewpreecha, U.; Salas, P.; Sognnaes, I.; Lam, A.; Knobloch, F. Macroeconomic impact of stranded fossil fuel assets. Nat. Clim. Change 2018, 8, 588–593. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Jain, A.K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71, 99–119. [Google Scholar] [CrossRef]
- Goh, C.S.; Aikawa, T.; Ahl, A.; Ito, K.; Kayo, C.; Kikuchi, Y.; Takahashi, Y.; Furubayashi, T.; Nakata, T.; Kanematsu, Y.; et al. Rethinking sustainable bioenergy development in Japan: Decentralised system supported by local forestry biomass. Sustain. Sci. 2020, 15, 1461–1471. [Google Scholar] [CrossRef]
- Baker, J.S.; Crouch, A.; Cai, Y.; Latta, G.; Ohrel, S.; Jones, J.; Latané, A. Logging residue supply and costs for electricity generation: Potential variability and policy considerations. Energy Policy 2018, 116, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Shirasawa, H.; Hayashi, U.; Aruga, K. Annual Availability of Forest Biomass Resources for Woody Biomass Power Generation Plants from Subcompartments and Aggregated Forests in Tohoku Region of Japan. Forests 2021, 12, 71. [Google Scholar] [CrossRef]
- Brown, M.A.; Favero, A.; Thomas, V.M.; Banboukian, A. The economic and environmental performance of biomass as an “intermediate” resource for power production. Util. Policy 2019, 58, 52–62. [Google Scholar] [CrossRef]
- Li, M.; Lenzen, M.; Yousefzadeh, M.; Ximenes, F.A. The roles of biomass and CSP in a 100% renewable electricity supply in Australia. Biomass Bioenergy 2020, 143, 105802. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Japan 2021—Energy Policy Review. 2021. Available online: www.iea.org/t&c/ (accessed on 12 July 2022).
- International Energy Agency (IEA). “World Balance Documentation,” Paris, France. 2021. Available online: https://iea.blob.core.windows.net/assets/20a89a1b-634c-41f1-87d1-d218f07769fb/WORLDBAL_Documentation.pdf (accessed on 14 July 2022).
- Agency for Natural Resources and Energy. Inefficient Coal Phasing out and Renewable Dominated Power Generation. 2020. Available online: https://www.meti.go.jp/shingikai/enecho/denryoku_gas/denryoku_gas/pdf/026_03_00.pdf (accessed on 15 July 2022).
- Ministry of Economy, Trade and Industry (METI). Japan’s 2050 Carbon Neutral Goal. 2020. Available online: https://www.meti.go.jp/english/policy/energy_environment/global_warming/roadmap/index.html (accessed on 5 April 2022).
- Ministry of Agriculture, Forestry and Fishery (MAFF). Annual Report on Forest Forestry in Japan FY 2018. 2018. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/30hakusyo_h/all/index.html (accessed on 15 July 2022).
- Yoshioka, T.; Sakurai, R.; Aruga, K.; Sakai, H.; Kobayashi, H.; Inoue, K. A GIS-based analysis on the relationship between the annual available amount and the procurement cost of forest biomass in a mountainous region in Japan. Biomass Bioenergy 2011, 35, 4530–4537. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fishery (MAFF). Wood Demand Chart of 2020. 2021. Available online: https://www.maff.go.jp/j/tokei/kouhyou/mokuzai_zyukyu/index.html (accessed on 20 July 2022).
- Ooba, M.; Hayashi, K.; Fujii, M.; Fujita, T.; Machimura, T.; Matsui, T. A long-term assessment of ecological-economic sustainability of woody biomass production in Japan. J. Clean. Prod. 2015, 88, 318–325. [Google Scholar] [CrossRef]
- Ahl, A.; Eklund, J.; Lundqvist, P.; Yarime, M. Balancing formal and informal success factors perceived by supply chain stakeholders: A study of woody biomass energy systems in Japan. J. Clean. Prod. 2018, 175, 50–59. [Google Scholar] [CrossRef]
- Hondo, H.; Moriizumi, Y. Employment creation potential of renewable power generation technologies: A life cycle approach. Renew. Sustain. Energy Rev. 2017, 79, 128–136. [Google Scholar] [CrossRef]
- Kinoshita, T.; Inoue, K.; Iwao, K.; Kagemoto, H.; Yamagata, Y. A spatial evaluation of forest biomass usage using GIS. Appl. Energy 2009, 86, 1–8. [Google Scholar] [CrossRef]
- Nagatomo, Y.; Ozawa, A.; Kudoh, Y.; Hondo, H. Impacts of employment in power generation on renewable-based energy systems in Japan—Analysis using an energy system model. Energy 2021, 226, 120350. [Google Scholar] [CrossRef]
- Yoshioka, T.; Aruga, K.; Nitami, T.; Sakai, H.; Kobayashi, H. A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass Bioenergy 2006, 30, 342–348. [Google Scholar] [CrossRef]
- Ohta, H. The Analysis of Japan’s Energy and Climate Policy from the Aspect of Anticipatory Governance. Energies 2020, 13, 5153. [Google Scholar] [CrossRef]
- Forestry Agency. State of Japan’s Forests and Forest Management. 2019. Available online: https://www.maff.go.jp/e/policies/forestry/attach/pdf/index-8.pdf (accessed on 25 July 2022).
- Yoshioka, T.; Aruga, K.; Nitami, T.; Kobayashi, H.; Sakai, H. Energy and carbon dioxide (CO2) balance of logging residues as alternative energy resources: System analysis based on the method of a life cycle inventory (LCI) analysis. J. For. Res. 2005, 10, 125–134. [Google Scholar] [CrossRef]
- Zanchi, G.; Pena, N.; Bird, N. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy 2012, 4, 761–772. [Google Scholar] [CrossRef]
- Fujioka, Y. Annual Report on Forest and Forestry in Japan, Fiscal Year 2014 (Notes) (Review of Government Report). For. Econ. 2015, 68, 29–34. [Google Scholar] [CrossRef]
- Jackson, S.L. Dusty roads and disconnections: Perceptions of dust from unpaved mining roads in Mongolia’s South Gobi province. Geoforum 2015, 66, 94–105. [Google Scholar] [CrossRef]
- Ooba, M.; Fujita, T.; Mizuochi, M.; Fujii, M.; Machimura, T.; Matsui, T. Sustainable Use of Regional Wood Biomass in Kushida River Basin, Japan. Waste Biomass Valoriz. 2012, 3, 425–433. [Google Scholar] [CrossRef]
- Battuvshin, B.; Matsuoka, Y.; Shirasawa, H.; Toyama, K.; Hayashi, U.; Aruga, K. Supply potential and annual availability of timber and forest biomass resources for energy considering inter-prefectural trade in Japan. Land Use Policy 2020, 97, 104780. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Aruga, K.; Nagasaki, M. Estimating the annual supply potential and availability of timber and logging residue using forest management records of the Tochigi prefecture, Japan. J. For. Res. 2014, 19, 22–33. [Google Scholar] [CrossRef]
- Yanagida, T.; Yoshida, T.; Kuboyama, H.; Jinkawa, M. Relationship between Feedstock Price and Break-Even Point of Woody Biomass Power Generation under FIT Program. J. Jpn. Inst. Energy 2015, 94, 311–320. [Google Scholar] [CrossRef]
- New Energy and Industrial Technology Development Organization (NEDO). GIS Database of the Estimation of Biomass Potential and Effective Usable Capacity. 2011. Available online: http://app1.infoc.nedo.go.jp/biomass/ (accessed on 11 January 2020).
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healey, S.; Heath, L.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M.; et al. Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Shifley, S.R.; He, H.S.; Lischke, H.; Wang, W.J.; Jin, W.; Gustafson, E.J.; Thompson, J.R.; Thompson, F.R.; Dijak, W.D.; Yang, J. The past and future of modeling forest dynamics: From growth and yield curves to forest landscape models. Landsc. Ecol. 2017, 32, 1307–1325. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Sentinel-2 Missions-Sentinel Online; European Space Agency (ESA): Paris, France, 2014. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 9 February 2020).
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Nelson, M. Evaluating Multitemporal Sentinel-2 Data for Forest Mapping Using Random Forest. Available online: http://www.diva-portal.org/smash/get/diva2:1138282/FULLTEXT01.pdf (accessed on 4 September 2019).
- Franklin, J.; Hiernaux, P.H.Y. Estimating foliage and woody biomass in Sahelian and Sudanian woodlands using a remote sensing model. Int. J. Remote Sens. 1991, 12, 1387–1404. [Google Scholar] [CrossRef]
- Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J. Remote Sens. 2000, 21, 1139–1157. [Google Scholar] [CrossRef]
- Dai, S.; Zheng, X.; Gao, L.; Xu, C.; Zuo, S.; Chen, Q.; Wei, X.; Ren, Y. Improving maps of forest aboveground biomass: A combined approach using machine learning with a spatial statistical model. Biogeosci. Discuss. 2020, 1–35, preprint. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S.-R. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Brown, S.; Gaston, G. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa. Environ. Monit. Assess. 1995, 38, 157–168. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Jackson, R.W.; Neto, A.B.F.; Erfanian, E. Woody biomass processing: Potential economic impacts on rural regions. Energy Policy 2018, 115, 66–77. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Past Climate Data. 2018. Available online: http://www.data.jma.go.jp/gmd/risk/obsdl/index.php (accessed on 8 February 2021).
- Forestry Promotion Division. Handbook of Fukushima’s Steady Supply of Woody Biomass. 2013. Available online: https://www.pref.fukushima.lg.jp/download/1/ringyoushinkou_biomas_tebiki.pdf (accessed on 10 June 2021).
- Fukushima Prefecture. Forest Plan of Aizu Region. 2016. Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/483435.pdf (accessed on 21 May 2021).
- USGS. The Shuttle Radar Topography Mission. 2013. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 12 January 2021).
- Yeh, C.; Perez, A.; Driscoll, A.; Azzari, G.; Tang, Z.; Lobell, D.; Ermon, S.; Burke, M. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 2020, 11, 2583. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.; Jackson, R. Soil and atmosphere influences on the spectra of partial canopies. Remote Sens. Environ. 1988, 25, 89–105. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1974; pp. 309–317. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Hu, Y.; Gou, X.; Tsunekawa, A.; Cheng, Y.; Hou, F. Assessment of the vegetation sensitivity index in alpine meadows with a high coverage and toxic weed invasion under grazing disturbance. Front. Plant Sci. 2022, 13, 1068941. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Liu, N.; Zhang, P.; Ying, T.; Song, K. Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass Bioenergy 2019, 122, 414–425. [Google Scholar] [CrossRef]
- Breiman, L.; Spector, P. Submodel Selection and Evaluation in Regression. The X-Random Case. Int. Stat. Rev. 1992, 60, 291. [Google Scholar] [CrossRef]
- Miranda, E.; Mutiara, A.B.; Wibowo, W.C. Classification of Land Cover from Sentinel-2 Imagery Using Supervised Classification Technique (Preliminary Study). In Proceedings of the 2018 International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 3–5 September 2018; pp. 69–74. [Google Scholar] [CrossRef]
- Nomura, K.; Mitchard, E.T.A. More Than Meets the Eye: Using Sentinel-2 to Map Small Plantations in Complex Forest Landscapes. Remote Sens. 2018, 10, 1693. [Google Scholar] [CrossRef]
- Mura, M.; Bottalico, F.; Giannetti, F.; Bertani, R.; Giannini, R.; Mancini, M.; Orlandini, S.; Travaglini, D.; Chirici, G. Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 126–134. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Remote sensing Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 2291, 14. [Google Scholar]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine cloud. Int. J. Appl. Earth Observ. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Downie, A.-L.; Diesing, M. How good is my map? A tool for semi-automated thematic mapping and spatially explicit confidence assessment. Environ. Model. Softw. 2018, 108, 111–122. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Xie, X.; La, Y.; Yamagata, Y. Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sens. 2021, 13, 1902. [Google Scholar] [CrossRef]
- Vogels, M.; de Jong, S.; Sterk, G.; Addink, E. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests. Int. J. Appl. Earth Obs. Geoinformation 2017, 54, 114–123. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Ooba, M.; Wang, Q.; Murakami, S.; Kohata, K. Biogeochemical model (BGC-ES) and its basin-level application for evaluating ecosystem services under forest management practices. Ecol. Model. 2010, 221, 1979–1994. [Google Scholar] [CrossRef]
- Ricker, W.E. Growth Rates and Models. Fish Physiol. 1979, 8, 677–743. Available online: http://sfx5.usaco.co.jp/nies?ctx_ver=Z39.88-2004&url_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fcir.nii.ac.jp%3ACiNiiR&rfe_dat=crid%2F1363388844508012288&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.at (accessed on 5 August 2021).
- Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef]
- Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI.). J. Inst. Polytech. Osaka City Univ. Ser. D Biol. 1963, 14, 107–129. Available online: https://cir.nii.ac.jp/crid/1571417125749892480.bib?lang=en (accessed on 24 December 2023).
- Ministry of the Environment, Government of Japan. Overview of the Plan for Global Warming Countermeasures Cabinet Decision on 13 May 2016; Ministry of the Environment, Government of Japan: Tokyo, Japan, 2016.
- Ministry of Agriculture, Forestry and Fishery (MAFF). Plan for Biomass Industry of Biradori. 2020. Available online: https://www.maff.go.jp/j/shokusan/biomass/b_sangyo_toshi/attach/pdf/H27sentei_kousou-5.pdf (accessed on 6 September 2021).
- National Institute for Land and Infrastructure Management. Technical Note on Methods for Energy Utilization of Plant Waste. 2015. Available online: https://iss.ndl.go.jp/books/R100000002-I026635461-00 (accessed on 20 September 2021).
- Ministry of the Environment; Greenhouse Gas Inventory Office of Japan (GIO); Center for Global Environmental Research (CGER); National Institute for Environmental Studies (NIES). “National Greenhouse Gas Inventory Report of JAPAN 2021,” Japan. 2021. Available online: http://www.cger.nies.go.jp/en/activities/supporting/publications/report/index.html%0ACopyright (accessed on 21 September 2021).
- Voivontas, D.; Assimacopoulos, D.; Koukios, E. Aessessment of biomass potential for power production: A GIS based method. Biomass Bioenergy 2001, 20, 101–112. [Google Scholar] [CrossRef]
- Tatebayashi, K.; Matsui, T.; Ooba, M.; Machimura, T.; Tani, Y.; Nakao, A.; Yamamoto, Y. A development of optimization model of timber production and utilization system for reduction of carbon in areas. J. Jpn. Soc. Civ. Eng. Ser. G (Environ. Res.) 2015, 71, II_297–II_308. [Google Scholar] [CrossRef]
- Japan Woody Biomass Association. Final Report of Woody Biomass Fuel Supply and Demand Trends Survey. 2023. Available online: https://jwba.or.jp/project-report/fuelwood-demand-survey/ (accessed on 25 September 2021).
- Uchiyama, Y. Greenhouse Effect Analysis of Power Generation Plants (Research Report Y91005), Tokyo. 1992. Available online: https://www.osti.gov/etdeweb/biblio/6676748 (accessed on 2 October 2021).
- Saini, R.; Ghosh, S.K. Exploring capabilities of sentinel-2 for vegetation mapping using random forest. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 1499–1502. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; D’andrimont, R.; Defourny, P. Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
- Khudinyan, M.; Silva, J.; Guerrero, I. The Use of Remotely Sensed Data for Forest Biomass Monitoring: A Case of Forest Sites in North-Eastern Armenia. 2019. Available online: https://run.unl.pt/bitstream/10362/63694/1/TGEO0209.pdf (accessed on 22 August 2019).
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Agency for Natural Resources and Energy (ANRE). Prefectural Sorted Energy Consumption. 2015. Available online: https://www.enecho.meti.go.jp/ (accessed on 10 November 2021).
- Ministry of Internal Affairs and Communications (MIC). 2015 Population Census of Fukushima Prefecture. 2015. Available online: http://www.stat.go.jp/english/index.html (accessed on 10 November 2021).
- Ministry of the Environment. Greenhouse Gas Emission Calculation, Reporting, and Disclosure System Based on the Law Concerning the Promotion of Measures to Cope with Global Warming. 2022. Available online: https://ghg-santeikohyo.env.go.jp/files/result/r01/result_R1_20221213.pdf (accessed on 11 October 2023).
- Bumpas, B.; Sasatani, D. Japanese New Forest Management System to Increase Log Production. 2019. Available online: https://fas.usda.gov/data/japan-japanese-new-forest-management-system-increase-log-production (accessed on 2 December 2023).
- Ministry of Agriculture, Forestry and Fishery (MAFF). Annual Report on Forest and Forestry in Japan of Fiscal 2016. 2017. Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/26hakusyo/pdf/h26summary.pdf (accessed on 20 November 2022).
- Liang, S.; Wang, J. (Eds.) Chapter 14—Aboveground Biomass. In Advanced Remote Sensing: Terrestrial Information Extraction and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 543–580. [Google Scholar]
Major Category | Sub-Category | Definition |
---|---|---|
Forest | Broad-leaf forest (BLF) | Forest dominated by deciduous broad-leaf trees, including Quercus (Quercus acutissima and Quercus serrata), Fagus (Fagus crenata and Fagus japonica), and Castanea crenata |
Needle-leaf forest (NLF) | Forest dominated by coniferous trees, including Cupressaceae (Cryptomeria japonica and Chamaecyparis obtusa) and Pinaceae (Larix kaempferi and Pinus densiflora) | |
Non-forest | Water body | Rivers, lakes, reservoirs, and swimming pools |
Cropland | Cultivated land, fallow land, or uncultivated land after harvest | |
Grassland | Land dominated by grass-like features and low shrubs | |
Bare land | Land dominated by mining fields, quarries, riverbanks, rocky mountainous areas, or unpaved playgrounds | |
Built-up area | Land dominated by buildings and paved surfaces |
NLF | BLF | ||
---|---|---|---|
Growth | Unit | ||
hmax | m | 29.94 | 18.93 |
hb | 1 | 1.515 | |
hc | 0.021 | 0.0181 | |
ch | 0.972 | 0.9059 | |
Equation type * | M | G | |
Population | |||
α | 0.953 | 0.4998 | |
k | 104 m3 ha−1 | 96.06 | 1.538 |
k * | 104 m3 ha−1 | 347.2 | 3.995 |
m−3 ha | 0.00021 | 0.07004 | |
−1.175 | −1.071 | ||
m−3 ha | 2665.12 | 20,850 | |
−2.322 | −3.214 |
Class | NLF | BLF |
---|---|---|
NLF (needle-leaf forest) | 1752 | 62 |
BLF (broad-leaf forest) | 37 | 1321 |
Producer accuracy (%) | 97.93 | 92.57 |
User accuracy (%) | 95.84 | 96.42 |
Overall accuracy (%) | 92.32% | |
Kappa coefficient | 0.9086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, T.; Ooba, M.; Fujii, M.; Matsui, T.; Haga, C.; Namba, A.; Nakamura, S. Estimation of Forest Residual Biomass for Bioelectricity Utilization towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images: A Case Study of Aizu Region of Fukushima, Japan. Remote Sens. 2024, 16, 706. https://doi.org/10.3390/rs16040706
Qian T, Ooba M, Fujii M, Matsui T, Haga C, Namba A, Nakamura S. Estimation of Forest Residual Biomass for Bioelectricity Utilization towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images: A Case Study of Aizu Region of Fukushima, Japan. Remote Sensing. 2024; 16(4):706. https://doi.org/10.3390/rs16040706
Chicago/Turabian StyleQian, Tana, Makoto Ooba, Minoru Fujii, Takanori Matsui, Chihiro Haga, Akiko Namba, and Shogo Nakamura. 2024. "Estimation of Forest Residual Biomass for Bioelectricity Utilization towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images: A Case Study of Aizu Region of Fukushima, Japan" Remote Sensing 16, no. 4: 706. https://doi.org/10.3390/rs16040706
APA StyleQian, T., Ooba, M., Fujii, M., Matsui, T., Haga, C., Namba, A., & Nakamura, S. (2024). Estimation of Forest Residual Biomass for Bioelectricity Utilization towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images: A Case Study of Aizu Region of Fukushima, Japan. Remote Sensing, 16(4), 706. https://doi.org/10.3390/rs16040706