Detecting Weak Underwater Targets Using Block Updating of Sparse and Structured Channel Impulse Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimating the Time-Varying CIR
Algorithm 1 The BCE algorithm (our Matlab implementation will be provided on the authors’ web pages upon publication). |
|
2.2. Detecting Weak Underwater Targets
3. Results and Discussion
3.1. Drift Compensation
3.2. Selecting Suitable Parameters
3.3. Matched-Filter-Based Detection
3.4. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Zheng, S.; Zhou, Y.; Tong, F.; Kastner, R. Exploiting time varying sparsity for underwater acoustic communication via dynamic compressed sensing. J. Acoust. Soc. Am. 2018, 143, 3997–4007. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhao, D.; Piao, S. Target detection method using multipath information in an underwater waveguide environment. IET Radar Sonar Navig. 2020, 14, 226–232. [Google Scholar] [CrossRef]
- Junejo, N.U.R.; Sattar, M.; Adnan, S.; Sun, H.; Adam, A.B.; Hassan, A.; Esmaiel, H. A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems. J. Mar. Sci. Eng. 2023, 11, 885. [Google Scholar] [CrossRef]
- Jing, S.; Hall, J.; Zheng, Y.R.; Xiao, C. Signal detection for underwater IoT devices with long and sparse channels. IEEE Internet Things J. 2020, 7, 6664–6675. [Google Scholar] [CrossRef]
- Lin, J.; Wang, G.; Zheng, Z.; Ye, R.; He, R.; Ai, B. Modeling and channel estimation for piezo-acoustic backscatter assisted underwater acoustic communications. China Commun. 2022, 19, 297–307. [Google Scholar] [CrossRef]
- Yuan, X.; Guo, L.; Luo, C.; Zhou, X.; Yu, C. A survey of target detection and recognition methods in underwater turbid areas. Appl. Sci. 2022, 12, 4898. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Willett, P.; Zhang, Q. Preamble detection for underwater acoustic communications based on sparse channel identification. IEEE J. Ocean. Eng. 2017, 44, 256–268. [Google Scholar] [CrossRef]
- Tian, Y.; Han, X.; Vorobyov, S.A.; Yin, J.; Liu, Q.; Qiao, G. Wideband signal detection in multipath environment affected by impulsive noise. J. Acoust. Soc. Am. 2022, 152, 445–455. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkatesan, R.; Dobre, O.A.; Li, C. Efficient Estimation and Prediction for Sparse Time-Varying Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2020, 45, 1112–1125. [Google Scholar] [CrossRef]
- Tian, Y.; Han, X.; Yin, J.; Li, Y. Adaption penalized complex LMS for sparse under-ice acoustic channel estimations. IEEE Access 2018, 6, 63214–63222. [Google Scholar] [CrossRef]
- Duttweiler, D.L. Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Proc. 2000, 8, 508–518. [Google Scholar] [CrossRef]
- Benesty, J.; Gay, S.L. An improved PNLMS algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002; Volume 2, pp. 1881–1884. [Google Scholar]
- Hoshuyama, O.; Goubran, R.A.; Sugiyama, A. A generalized proportionate variable step-size algorithm for fast changing acoustic environments. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 4, pp. 161–164. [Google Scholar]
- Qi, C.; Wang, X.; Wu, L. Underwater acoustic channel estimation based on sparse recovery algorithms. IET Signal Process. 2011, 5, 739–747. [Google Scholar] [CrossRef]
- Zakharov, Y.V.; Li, J. Sliding-window homotopy adaptive filter for estimation of sparse UWA channels. In Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Rio de Janerio, Brazil, 10–13 July 2016; pp. 1–4. [Google Scholar]
- Qiao, G.; Gan, S.; Liu, S.; Ma, L.; Sun, Z. Digital self-interference cancellation for asynchronous in-band full-duplex underwater acoustic communication. Sensors 2018, 18, 1700. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Rao, B.D.; Garudadri, H. A sparse conjugate gradient adaptive filter. IEEE Signal Process. Lett. 2020, 27, 1000–1004. [Google Scholar] [CrossRef]
- Eksioglu, E.M.; Tanc, A.K. RLS algorithm with convex regularization. IEEE Signal Process. Lett. 2011, 18, 470–473. [Google Scholar] [CrossRef]
- Eksioglu, E.M. Sparsity regularised recursive least squares adaptive filtering. IET Signal Process. 2011, 5, 480–487. [Google Scholar] [CrossRef]
- Montazeri, M.; Duhamel, P. A set of algorithms linking NLMS and block RLS algorithms. IEEE Trans. Signal Process. 1995, 43, 444–453. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Preisig, J.C.; Pattipati, K.R.; Willett, P. Clustered Adaptation for Estimation of Time-Varying Underwater Acoustic Channels. IEEE Trans. Signal Process. 2012, 60, 3079–3091. [Google Scholar] [CrossRef]
- Qiao, G.; Song, Q.; Ma, L.; Liu, S.; Sun, Z.; Gan, S. Sparse Bayesian learning for channel estimation in time-varying underwater acoustic OFDM communication. IEEE Access 2018, 6, 56675–56684. [Google Scholar] [CrossRef]
- Paleologu, C.; Benesty, J.; Ciochină, S. Linear system identification based on a Kronecker product decomposition. IEEE/ACM Trans. Audio Speech Lang. Proc. 2018, 26, 1793–1808. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Stanciu, C.; Anghel, C.; Ciochină, S. A multichannel recursive least-squares algorithm based on a Kronecker product decomposition. In Proceedings of the 43rd International Conference on Telecommunications and Signal Processing, Milan, Italy, 7–9 July 2020; pp. 14–18. [Google Scholar]
- Wang, X.; Huang, G.; Benesty, J.; Chen, J.; Cohen, I. Time difference of arrival estimation based on a Kronecker product decomposition. IEEE Signal Process. Lett. 2020, 28, 51–55. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Stanciu, C.; Anghel, C.; Ciochină, S. Recursive least-squares algorithms for the identification of low-rank systems. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 903–918. [Google Scholar] [CrossRef]
- Bhattacharjee, S.S.; George, N.V. Nearest Kronecker product decomposition based normalized least mean square algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020; pp. 476–480. [Google Scholar]
- Marple, S.L. Estimating group delay and phase delay via discrete-time “analytic” cross-correlation. IEEE Trans. Signal Process. 1999, 47, 2604–2607. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, H. A new proportionate normalized least mean square algorithm for high measurement noise. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and Computing, Ningbo, China, 19–22 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Variddhisaï, T.; Mandic, D.P. On an RLS-like LMS adaptive filter. In Proceedings of the 2017 22nd International Conference on Digital Signal Processing, London, UK, 23–25 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Harville, D.A. Matrix Algebra from a Statistician’s Perspective; Taylor & Francis: Abingdon-on-Thames, UK, 1998. [Google Scholar]
- Van Loan, F.C. The ubiquitous Kronecker product. J. Comput. Appl. Math. 2000, 123, 85–100. [Google Scholar] [CrossRef]
- Jakobsson, A.; Mossberg, M.; Rowe, M.; Smith, J.A.S. Exploiting Temperature Dependency in the Detection of NQR Signals. IEEE Trans. Signal Process. 2006, 54, 1610–1616. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
Algorithm | (dB) | |
---|---|---|
SNR = 0 dB | ||
Without | With | |
LS | 3.74 | −4.47 |
BRLS [20] | 0.91 | −9.49 |
−BRLS [19] | 0.89 | −9.63 |
IPNLMS [29] | 2.39 | −6.69 |
mNLMS [30] | 0.58 | −10.84 |
BSCG | 0.39 | −11.17 |
KBSCG | 0.81 | −9.59 |
BCE | 2.38 | −11.59 |
Parameter | Value |
---|---|
Starting frequency | 3 kHz |
Bandwidth | 4 kHz |
Sampling frequency | 16 kHz |
Pulse width | 200 ms |
PRT | 3.3 s |
Tx depth | 4 m |
Rx depth | 2 m |
Sea depth | 10 m |
Horizontal range of Tx and Rx | 5 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ling, Q.; Sheng, X.; Mu, M.; Jakobsson, A. Detecting Weak Underwater Targets Using Block Updating of Sparse and Structured Channel Impulse Responses. Remote Sens. 2024, 16, 476. https://doi.org/10.3390/rs16030476
Yang C, Ling Q, Sheng X, Mu M, Jakobsson A. Detecting Weak Underwater Targets Using Block Updating of Sparse and Structured Channel Impulse Responses. Remote Sensing. 2024; 16(3):476. https://doi.org/10.3390/rs16030476
Chicago/Turabian StyleYang, Chaoran, Qing Ling, Xueli Sheng, Mengfei Mu, and Andreas Jakobsson. 2024. "Detecting Weak Underwater Targets Using Block Updating of Sparse and Structured Channel Impulse Responses" Remote Sensing 16, no. 3: 476. https://doi.org/10.3390/rs16030476
APA StyleYang, C., Ling, Q., Sheng, X., Mu, M., & Jakobsson, A. (2024). Detecting Weak Underwater Targets Using Block Updating of Sparse and Structured Channel Impulse Responses. Remote Sensing, 16(3), 476. https://doi.org/10.3390/rs16030476