Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll Content in Complex Terrain Regions Using a Geographic Statistical Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Chlorophyll Content Product
2.2.2. SRTM Digital Elevation 30 m Data
2.2.3. ERA5 Reanalysis Meteorological Dataset
2.2.4. MODIS Land Cover Product
2.2.5. MODIS Leaf Area Index (LAI) Product
2.3. Methodology
2.3.1. Influencing Factors
2.3.2. Geographic Detector Model
3. Results
3.1. Analysis of LCC Distribution Characteristics
3.2. Analysis of Influencing Factors
3.3. Mutual Influence Analysis of Influencing Factors
3.4. Influencing Factors in Different Seasons
3.5. Influencing Factors in Different Climatic Zones
4. Conclusions and Discussion
- (1)
- The impact of topographical factors on LCC distribution is higher than that of meteorological factors and vegetation types in terrain with complex topography. Elevation (q-value = 49.31%) is the primary factor determining photosynthesis in Sichuan Province, followed by temperature (46.10%) and vegetation types (40.73%). The most significant strata differences in LCC are also observed in elevation, temperature, and vegetation types. The minimal and maximal average LCC among all nine factors appears in the highest and second lowest elevation strata. The elevation effectively distinguishes the variations in climate factors and vegetation types with the most significant influence on LCC distribution.
- (2)
- Combining the influencing factors pairwise increased the combined q-values. The combination of elevation with other factors yielded the highest combined q-value. Slope alone had a relatively low q-value, but when combined with other factors, there was often a non-linear enhancement effect. The slope enhances the sensitivity of vegetation photosynthesis to the influencing factors.
- (3)
- The q-values for all influencing factors are higher in winter and spring and lowest in summer. The elevation, temperature, and precipitation stress vegetation growth strongly in winter and spring, and the influence significantly weakens in summer since the optimal growing conditions alleviate stress from any factor on vegetation growth.
- (4)
- The different primary factors drive or constrain vegetation photosynthesis in different climate zones due to their distinct temperature and humidity characteristics, since the significant influencing factors among different climate zones differ significantly. The sum of the nine q-values is more effective in the plateau climate zone than in the other two, indicating that the influencing factors have more constraints on photosynthesis in the plateau climate. The conditions favor plant growth in the subtropical humid climate zone, resulting in fewer constraints imposed by topography, meteorology, and other factors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, B.; He, Y. Evaluating Empirical Regression, Machine Learning, and Radiative Transfer Modelling for Estimating Vegetation Chlorophyll Content Using Bi-Seasonal Hyperspectral Images. Remote Sens. 2019, 11, 1979. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf Chlorophyll Content as a Proxy for Leaf Photosynthetic Capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Luo, X.; Croft, H.; Chen, J.M.; He, L.; Keenan, T.F. Improved Estimates of Global Terrestrial Photosynthesis Using Information on Leaf Chlorophyll Content. Glob. Chang. Biol. 2019, 25, 2499–2514. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A.; Noland, T.L.; Nesbitt, N.; Arabian, J. Evaluating Leaf Chlorophyll Content Prediction from Multispectral Remote Sensing Data within a Physically-Based Modelling Framework. ISPRS J. Photogramm. Remote Sens. 2015, 102, 85–95. [Google Scholar] [CrossRef]
- Malenovskỳ, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, P.; Kaplan, V.; Hanuš, J.; Gastellu-Etchegorry, J.-P.; Schaepman, M.E. Retrieval of Spruce Leaf Chlorophyll Content from Airborne Image Data Using Continuum Removal and Radiative Transfer. Remote Sens. Environ. 2013, 131, 85–102. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y. The Global Distribution of Leaf Chlorophyll Content. Remote Sens. Environ. 2020, 236, 111479. [Google Scholar] [CrossRef]
- Xu, M.; Liu, R.; Chen, J.M.; Liu, Y.; Wolanin, A.; Croft, H.; He, L.; Shang, R.; Ju, W.; Zhang, Y.; et al. A 21-Year Time Series of Global Leaf Chlorophyll Content Maps From MODIS Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4413513. [Google Scholar] [CrossRef]
- Xu, M.; Liu, R.; Chen, J.M.; Shang, R.; Liu, Y.; Qi, L.; Croft, H.; Ju, W.; Zhang, Y.; He, Y.; et al. Retrieving Global Leaf Chlorophyll Content from MERIS Data Using a Neural Network Method. ISPRS J. Photogramm. Remote Sens. 2022, 192, 66–82. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Liu, Q.; Lin, S.; Huete, A.; Liu, L.; Croft, H.; Clevers, J.G.; Zeng, Y.; Wang, X. A Novel Red-Edge Spectral Index for Retrieving the Leaf Chlorophyll Content. Methods Ecol. Evol. 2022, 13, 2771–2787. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Brown, L.; Morris, H.; Bourg, L.; Goryl, P.; Dransfeld, S.; Dash, J. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sens. 2020, 12, 2652. [Google Scholar] [CrossRef]
- Qian, X.; Liu, L.; Chen, X.; Zhang, X.; Chen, S.; Sun, Q. Global Leaf Chlorophyll Content Dataset (GLCC) from 2003–2012 to 2018–2020 Derived from MERIS and OLCI Satellite Data: Algorithm and Validation. Remote Sens. 2023, 15, 700. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Wang, X.; Zhang, Z.; Gu, C.; Wen, Y.; Chu, T.; Liu, Q. A dataset of 30 m/10-day leaf chlorophyll content of MuSyQ GF-series(2019–2020, China, Version 01). China Sci. Data 2022, 7, 241–249. [Google Scholar]
- Bulthuis, D.A. Effects of Temperature on Photosynthesis and Growth of Seagrasses. Aquat. Bot. 1987, 27, 27–40. [Google Scholar] [CrossRef]
- Lawlor, D.W. Musings about the Effects of Environment on Photosynthesis. Ann. Bot. 2009, 103, 543–549. [Google Scholar] [CrossRef]
- Balasimha, D.; Daniel, E.V.; Bhat, P.G. Influence of Environmental Factors on Photosynthesis in Cocoa Trees. Agric. For. Meteorol. 1991, 55, 15–21. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.W.; McGuire, M.A.; Teskey, R.O. Increase in Leaf Temperature Opens Stomata and Decouples Net Photosynthesis from Stomatal Conductance in Pinus Taeda and Populus Deltoides x Nigra. J. Exp. Bot. 2017, 68, 1757–1767. [Google Scholar] [CrossRef]
- Becker, V.I.; Goessling, J.W.; Duarte, B.; Caçador, I.; Liu, F.; Rosenqvist, E.; Jacobsen, S.-E. Combined Effects of Soil Salinity and High Temperature on Photosynthesis and Growth of Quinoa Plants (Chenopodium Quinoa). Funct. Plant Biol. 2017, 44, 665–678. [Google Scholar] [CrossRef]
- Zhu, J.; He, W.; Yao, J.; Yu, Q.; Xu, C.; Huang, H.; Mhae, B.; Jandug, C. Spectral Reflectance Characteristics and Chlorophyll Content Estimation Model of Quercus Aquifolioides Leaves at Different Altitudes in Sejila Mountain. Appl. Sci. 2020, 10, 3636. [Google Scholar] [CrossRef]
- Li, A.; Yin, G.; Jin, H.; Bian, J.; Zhao, W. Principles and Methods for the Retrieval of Biophysical Variables in Mountainous Areas. Remote Sens. Technol. Appl. 2016, 31, 1–11. [Google Scholar]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.-F.; Hu, M.-G.; Xu, C.-D.; Christakos, G.; Zhao, Y. Estimation of Citywide Air Pollution in Beijing. PLoS ONE 2013, 8, e53400. [Google Scholar] [CrossRef]
- Wang, J.-F.; Reis, B.Y.; Hu, M.-G.; Christakos, G.; Yang, W.-Z.; Sun, Q.; Li, Z.-J.; Li, X.-Z.; Lai, S.-J.; Chen, H.-Y.; et al. Area Disease Estimation Based on Sentinel Hospital Records. PLoS ONE 2011, 6, e23428. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, R. The Spatial Characteristics and Formation Mechanism of the County Urbanization in China. Acta Geogr. Sin. 2012, 67, 1011–1020. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Wang, J.; Christakos, G.; Si, J.; Zhao, H.; Ding, Y.; Li, J. Influence of Planting Patterns on Fluoroquinolone Residues in the Soil of an Intensive Vegetable Cultivation Area in Northern China. Sci. Total Environ. 2013, 458–460, 63–69. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 361. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service ERA5-Land Monthly Averaged Data from 2001 to Present 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthlymeans?tab=overview (accessed on 10 May 2023).
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic Algorithm for Estimating Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from MODIS and MISR Data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
Influencing Factor Type | Influencing Factor | Temporal Resolution | Unit |
---|---|---|---|
Terrain Factors | Elevation | Year | m |
Slope | Year | ° | |
Aspect | Year | ° | |
Meteorological and Soil Factors | Temperature | Monthly | °C |
Net Solar Radiation | Monthly | J/m2 | |
Precipitation | Monthly | mm | |
Soil Moisture Content | Monthly | Volume Fraction | |
Vegetation Factors | Vegetation Types | Year | - |
LAI | Eight Days | - |
Types of Interactions | Meaning |
---|---|
Non-linear Weakening | |
Single Factor Non-linear Weakening | |
Two-factor Enhancement | |
Independent | |
Non-linear Enhancement |
Influencing Factor Type | Influencing Factor | q-Value (%) | p-Value |
---|---|---|---|
Terrain Factors | Elevation | 49.31 | 2.96 × 10−10 |
Slope | 2.87 | 3.60 × 10−11 | |
Aspect | 0.76 | 4.80 × 10−10 | |
Meteorological and Soil Factors | Temperature | 46.10 | 6.33 × 10−10 |
Net Solar Radiation | 28.60 | 2.39 × 10−10 | |
Precipitation | 15.15 | 3.05 × 10−10 | |
Soil Moisture Content | 16.30 | 3.09 × 10−10 | |
Vegetation Factors | Vegetation Types | 40.73 | 8.52 × 10−10 |
LAI | 23.39 | 8.63 × 10−10 |
Influencing Factor | Elevation | Slope | Aspect | Temperature | Net Solar Radiation | Soil Moisture Content | Precipitation | Vegetation Types | LAI |
---|---|---|---|---|---|---|---|---|---|
Elevation | ne. * | ne. | te. | te. | te. | te. | te. | te. | |
Slope | 52.37% | ne. | te. | ne. | ne. | ne. | ne. | ne. | |
Aspect | 50.27% | 3.72% | te. | ne. | te. | te. | te. | ne. | |
Temperature | 52.12% | 48.39% | 46.83% | te. | te. | te. | te. | te. | |
Net solar radiation | 51.88% | 23.46% | 17.06% | 47.53% | te. | te. | te. | te. | |
Soil Moisture Content | 50.75% | 19.78% | 17.05% | 48.14% | 30.36% | te. | te. | te. | |
Precipitation | 52.65% | 32.30% | 28.91% | 51.31% | 36.44% | 35.82% | te. | te. | |
Vegetation Types | 56.37% | 43.82% | 41.24% | 54.34% | 44.60% | 44.80% | 46.94% | te. | |
LAI | 54.30% | 30.36% | 25.10% | 52.57% | 29.71% | 36.51% | 42.80% | 46.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, T.; Li, J.; Zhao, J.; Gu, C.; Mumtaz, F.; Dong, Y.; Zhang, H.; Liu, Q. Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll Content in Complex Terrain Regions Using a Geographic Statistical Model. Remote Sens. 2024, 16, 479. https://doi.org/10.3390/rs16030479
Chu T, Li J, Zhao J, Gu C, Mumtaz F, Dong Y, Zhang H, Liu Q. Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll Content in Complex Terrain Regions Using a Geographic Statistical Model. Remote Sensing. 2024; 16(3):479. https://doi.org/10.3390/rs16030479
Chicago/Turabian StyleChu, Tianjia, Jing Li, Jing Zhao, Chenpeng Gu, Faisal Mumtaz, Yadong Dong, Hu Zhang, and Qinhuo Liu. 2024. "Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll Content in Complex Terrain Regions Using a Geographic Statistical Model" Remote Sensing 16, no. 3: 479. https://doi.org/10.3390/rs16030479
APA StyleChu, T., Li, J., Zhao, J., Gu, C., Mumtaz, F., Dong, Y., Zhang, H., & Liu, Q. (2024). Regional Analysis of Dominant Factors Influencing Leaf Chlorophyll Content in Complex Terrain Regions Using a Geographic Statistical Model. Remote Sensing, 16(3), 479. https://doi.org/10.3390/rs16030479