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Abstract: In this paper, we considered the real-time modeling of an underwater channel impulse
response (CIR), exploiting the inherent structure and sparsity of such channels. Building on the
recent development in the modeling of acoustic channels using a Kronecker structure, we approxi-
mated the CIR using a structured and sparse model, allowing for a computationally efficient sparse
block-updating algorithm, which can track the time-varying CIR even in low signal-to-noise ratio
(SNR) scenarios. The algorithm employs a conjugate gradient formulation, which enables a gradual
refinement if the SNR is sufficiently high to allow for this. This was performed by gradually relaxing
the assumed Kronecker structure, as well as the sparsity assumptions, if possible. The estimated CIR
was further used to form a residual signal containing (primarily) information of the time-varying
signal responses, thereby allowing for the detection of weak target signals. The proposed method
was evaluated using both simulated and measured underwater signals, clearly illustrating the better
performance of the proposed method.

Keywords: time-varying impulse response; drift compensation; structured channel estimate; underwater
sonar; weak target detection

1. Introduction

Numerous underwater applications, ranging from monitoring the marine environ-
ment, for instance to detect pollution, to underwater communication, depend on accurate
and reliable estimates of the underwater channel impulse response (CIR), detailing the time-
and location-dependent multipath wave propagation typical of such an environment [1–6].
The channel is notably affected by numerous factors, ranging from the depth and salinity of
the water to sea structures, thermoclines, sea mammals, and ships, as well as experiences
strong noise and interference signals and often also varies due to ship or sonar motions.
An accurate estimation of the CIR is critical to allow for the detection of the energy of weak
echo signals, such as the backscattered signal of underwater targets, which will appear as a
corresponding variation in the resulting CIR estimate [7,8]. Due to the importance of the
CIR estimate, notable efforts have been made to construct reliable estimation technologies
for underwater CIRs, with recent efforts mainly focusing on exploiting the typical sparse
structure of the CIRs, such as in the compressed sensing formulation in [9], where an
extended orthogonal matching pursuit method was proposed. Other common alternatives
include adaptive estimation methods, such as the one proposed by Tian et al. in [10], which
combined a least-mean-squares (LMS) formulation with the use of an adaptive complex-
valued penalty term. In [11–13], the authors imposed sparsity by making use of a step-size
selection, which varied with the magnitude of the CIR coefficients.
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As an alternative, recursive least-squares (RLS) formulations may be used, typically
having a notably faster convergence, although at the price of increased computational
complexity. Given the time-varying nature of underwater CIRs, several sparse RLS for-
mulations have been developed, striving to retain the fast convergence while imposing
the sparse structure of the CIRs [14–16]. An interesting alternative formulation is that
of the sparse conjugate gradient (SCG) algorithm proposed in [17], which employs an
affine scaling transform (AST) to enforce sparsity and combines the advantages of the low
complexity of the LMS-based methods and the fast convergence of the RLS-based methods.
The resulting estimator has been found to offer better performance compared to several
sparse RLS formulations, such as l0-RLS and l1-RLS [18,19], as well as l1-RRLS [19]. Notably,
most of the derived methods strive to update the estimated CIR on a sample-to-sample
basis, i.e., as each new sample becomes available, imposing the gradual forgetting of the
previously observed measurements. This is typically not the case for active sonar mea-
surement, where a batch of data is collected, resulting from each of the transmitted sonar
pulses, necessitating a block (pulse) updating scheme, wherein earlier block measurements
are gradually forgotten instead. Similar situations occur also in other fields, and several
block-updating versions of CIR estimators have been investigated in the literature (see,
e.g., [20–22]).

It is worth noting that drift causes a slight Doppler shift in the resulting signal, but also
a time-varying time delay between the transmitter and receiver due to the varying distance
of the propagation path. In the studied measurements, the latter (typically dominant) form
of time delay shifting was our primary concern, as it affects the CIR’s sparsity over multiple
transmissions. The Doppler effect of the drift here causes a slight mismatch between
the transmitted and matched signals, somewhat increasing the resulting line widths. In
order to exploit the sparsity of the CIR, the time delay drift has to be taken into account
and compensated.

In this work, we examined this form of block-based updating scheme, while also
incorporating recent developments in acoustic channel estimation, wherein structural infor-
mation is imposed on the impulse response. In [23], the authors showed that an acoustic
impulse response can be well modeled using a summed Kronecker structure, thereby
significantly reducing the number of parameters required for the detail ofthe channel.
These efforts have since been extended to incorporating such a structure in a variety of
estimators [24,25], including both an RLS-based [26] and an LMS-based estimator [27]. To
further this development, this work presents a joint estimation framework for time-varying
channels, which is robust against the low SNR scenarios typically encountered in underwa-
ter measurements, as well as a detection algorithm for weak underwater targets, for active
sonar systems. Figure 1 illustrates the flow diagram of the proposed combined methods.
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Figure 1. Block diagram of the processing chain for the proposed joint estimation and detection
framework.
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The main contributions are summarized as follows:
(1) Drift compensation: At the initial stage, we compensated the measured signal for the

typically present drift. This was achieved by estimating the pulse-to-pulse time delay of
the measured signal using a Fourier-based technique [28]; this allows the measured signal
to be shifted accordingly before inverse transformation, thereby compensating for the drift.

(2) Block updating the CIR estimate: Using the drift-compensated signals, we proceeded
to formulate the proposed sparse and structural CIR estimator. The resulting Kronecker-
based block SCG (KBSCG) estimator is able to model the CIR even for low signal-to-noise
ratios (SNRs) well, here defined as SNR = 10 log Ps

Pe
, where Ps and Pe denote the power of the

signal and the noise, respectively. Although, given the inevitable model mismatch with the
true CIR, which generally does not exhibit an exact sparse Kronecker structure, the method
will be unable to continue to improve with the increasing SNR. Furthermore, in cases where
the channel is changing rapidly, we found that the block-based improved proportionate
NLMS (IPNLMS) [29] will react faster to these changes than the KBSCG estimator, although
not being able to achieve the same level of performance after convergence. Therefore, in
order to ascertainthe better performance of the method, first, we compared the model fit
with that of the IPNLMS, to see if the latter approach managed to adapt faster. If it did, we
proceeded to also compare it to the proposed block-based SCG (BSCG), which does not
impose a Kronecker structure on the CIR. In the high SNR case, the BSCG estimate will be
able to offer improved modeling, and the proposed estimator, therefore, proceeds to use
the BSCG update instead. For an even higher SNR, the assumption of sparsity may also be
relaxed without suffering from numerous spurious estimates in the CIR; in such a case, the
updating may instead employ the block-based RLS (BRLS) to allow further refinement. We
term the resulting combined estimator the block combined estimator (BCE). As we were
mainly interested in the low SNR case, the later steps were less often applicable, but are
included here to also allow for such cases.

(3) Detecting weak targets’ echo: We illustrate the effectiveness of the CIR estimate by
using it to form the residual between the observed data and the reconstructed data using
the CIR estimate from the preceding pulse. The use of the preceding CIR estimates ensures
that any channel variations, such as those resulting from a moving target, will remain in
the resulting residual. We illustrate this by implementing a matched subspace detector to
determine the presence of the target when using different forms of CIR estimates, using
both simulated and measured underwater data, showing that the proposed CIR estimator
offers a better performance.

The remainder of this paper is organized as follows: In the following section, we detail
the problem formulation and derive the proposed block-updating CIR estimate. Then, in
Section 2.2, we proceed to introduce the matched subspace detector. Sections 3 and 3.4
illustrate the performance of the proposed CIR estimator and the resulting detector using
both simulated and measured underwater data. Finally, Section 4 gives our conclusions.

2. Materials and Methods
2.1. Estimating the Time-Varying CIR

In practice, underwater sensor equipment is always impacted by water flow, resulting
in variations in the signal propagation. The effect is illustrated in Figure 2, showing the
CIR estimated using the least squares (LS), for each pulse, in a real sea experiment. As can
be seen, the CIR exhibits a sparse structure, but one that varies slowly in between pulses
due to the drift.

This time delay effect also differs from the Doppler effect that occurs, as the latter
primarily involves the effect of the relative velocity between the source and the observer,
causing a corresponding signal distortion. As recursive algorithms rely on the assumption
of a constant or slowly varying system, one has to compensate for such time delay pertur-
bations since these otherwise introduce abrupt changes in the system dynamics, which can
lead to inaccurate estimates and even unstable behavior in the recursive estimation process.
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In order to model the time-varying drift, we considered the mth tap of the CIR for the kth
pulse, hk(m),modeled as

hk(m) = hk−1(m − ⌊ fsτk⌋) + ∆k (1)

where τk ∈ R denotes the time delay of the CIR for pulse k, with ⌊·⌋ denoting the rounding
down (floor) operation, and fs the sampling frequency, where ∆k ∈ N(0, σ2) denotes the
channel perturbation as compared to the previous CIR (taking the drift and amplitude
variation into account). As a result, the L-dimensional measured signal resulting from the
kth pulse, ỹk, may be modeled as

ỹk = sk ⋆ hk + nk (2)

where sk is the N-dimensional transmitted waveform, hk the M-dimensional CIR, and
nk an additive noise component, for the kth pulse, with ⋆ denoting the convolution. In
order to determine the time delay drift, we employed the classical Fourier-based time
delay estimator presented in [28], which allows for a computationally efficient and reliable
estimate of the (possibly non-integer) shift between ỹk and ỹk−1. By shifting the Fourier-
transformed representation of the measured signal with the estimated shift, τ̂k, the drift-
compensated measured signal, yk, may then be formed using an inverse Fourier transform.
We then proceeded to form a block-by-block time updating of the CIR using yk, thereby
allowing us to exploit the sparse structure of the drift-compensated CIR, which is illustrated
in Figure 3 for the CIR shown in Figure 2.
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Figure 2. Pulse-to-pulse LS estimate of the CIR from high SNR sea data. The figure shows both
the underlying sparse nature of the underwater CIR and the channel drift in between pulses. The
numerous spurious components visible in the CIR estimates are due to the non-sparse nature of the
LS estimate.

5 10 15 20 25 30 35 40

Pulse Number

20

40

60

80

100

120

140

160

180

ta
p
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Direct Path

Seaface Reflection

Bottom Reflection

Figure 3. Pulse-to-pulse LS estimate of the drift-compensated CIR from high SNR sea data.
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Next, we extended the SCG algorithm presented in [17] to a block-by-block formulation
incorporating a summed Kronecker structure on the CIR. The SCG is formulated similarly
to the RLS, but instead uses a conjugate gradient formulation to minimize the resulting
weighted quadratic cost function [17,30]. Extending this formulation to a block-by-block
update, the block-SCG (BSCG) is formed as

ĥk = arg min
hk

Jk(Wkhk)

= arg min
hk

1
2

hT
k WkRkWkhk − hT

k Wkrk (3)

where

Rk = λRk−1 + SkST
k (4)

rk = λrk−1 + Skyk (5)

with 0 < λ ≤ 1 denoting the blockwise forgetting factor, and

Sk =

 sk(1) · · · sk(N) 0 0
...

. . . . . . . . .
...

0 · · · sk(1) · · · sk(N)

 (6)

where sk(ℓ) denotes the ℓth index in the kth transmitted pulse. The weighting matrix, Wk,
in (3) is formed as the M × M diagonal matrix with the vector wk along the diagonal, where

wk(ℓ) =
1
ξ

(∣∣∣ĥk−1(ℓ)
∣∣∣+ c

)1−ξ
(7)

for ℓ = 1, . . . , M, with c > 0 denoting a small regularization constant introduced for
stability purposes and 0 < ξ ≤ 1 a factor used to control the sparsity of the solution (with a
smaller ξ promoting stronger sparsity). Forming the gradient of Jk(Wkhk) with respect to
hk as

gk = ∇h Jk(Wkh) = Wk(Rkhk−1 − rk) (8)

the blockwise update ĥk may be formed as

ĥk = ĥk−1 + αkWkpk (9)

where

αk =
pT

k gk

pT
k WkRkWkpk + δ

(10)

pk = βkpk−1 − gk (11)

βk =
pT

k−1WkRkWkgk

pT
k−1WkRkWkpk−1 + δ

(12)

where δ > 0 is a small regularization constant preventing division by zero. Further details
on the step size αk and the scaling factor βk to sustain the Markov conjugacy can be
found in [30]. The method was further extended to incorporate the additionally assumed
summed Kronecker product structure, reminiscent of the development in [23], such that
we proceeded to model

hk =
P

∑
p=1

hk,2,p ⊗ hk,1,p (13)
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where ⊗ denotes the Kronecker product, with hk,2,p and hk,1,p, for p = 1, 2, . . . , P, denoting
two shorter impulse responses of lengths M2 and M1, respectively. Relaxing the formulation
in [23], we here assumed that M1M2 ≤ M, with M1 ≥ M2 ≥ P. Following [31], (13) is,
thus, rewritten as

hk =
P

∑
p=1

Hk,2,phk,1,p =
P

∑
p=1

Hk,1,phk,2,p (14)

where Hk,2,p = hk,2,p ⊗ IM1 and Hk,1,p = IM2 ⊗ hk,1,p are matrices of sizes M1M2 × M1 and
M2 × M1M2, respectively. This reformulation allowed us to separate the contributions
from the two sets of CIRs in (3), such that

Jk(Wkhk) = Jk,1 + Jk,2 (15)

We proceeded to perform the update by keeping one of the sets of CIRs fixed at a time,
minimizing the other, such that, when keeping hk,2,p fixed, we only needed to minimize

Jk,1 =
1
2

hT
k,1Wk,1Rk,1Wk,1hk,1 − hT

k,1Wk,1rk,1 (16)

where

hk,1 =
[

hT
k,1,1 . . . hT

k,1,P

]T
(17)

Rk,1 = λRk−1,1 + Sk,2ST
k,2 (18)

rk,1 = λrk−1,1 + Sk,2yk (19)

Sk,2 =
[

ST
k,2,1 . . . ST

k,2,P

]T
(20)

Sk,2,p = ST
k Hk,2,p (21)

Here, the weighting matrix for the first set of CIRs, Wk,1 = diag(wk,1), is formed using only
this set, such that

wk,1(ℓ) =
1
ξ1

(∣∣∣ĥk−1,1(ℓ)
∣∣∣+ c1

)1−ξ1
(22)

This led to the updating of the first set of CIR estimates:

hk,1 = hk−1,1 + Wk,1pk,1αk,1 (23)

where

αk,1 =
pT

k,1gk,1

pT
k,1Wk,1Rk,1Wk,1pk,1 + δ

(24)

pk,1 = βk,1pk−1,1 − gk,1 (25)

βk,1 =
pT

k−1,1Wk,1Rk,1Wk,1gk,1

pT
k−1,1Wk,1Rk,1Wk,1pk−1,1 + δ

(26)

gk,1 = Wk,1(Rk,1hk−1,1 − rk,1) (27)

Similarly, fixing the first set of CIRs, the second set may be updated as

hk,2 = hk−1,2 + Wk,2pk,2αk,2 (28)

with similar definitions as for the first set. The Kronecker-based BSCG (KBSCG) estimator
was, thus, formed by updating both sets of CIR estimates separately. As both (23) and (28)
depend on the other set of CIRs, the estimates of (24)–(27) and the corresponding equations
for the second set were alternatively computed using a bilinear optimization strategy [32],
until practical convergence, prior to forming the updating in (23) and (28).
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As shown in the following, the proposed KBSCG allowed for an accurate representa-
tion of the CIR, especially in low SNR cases, but did not converge as fast as the IPNLMS
method [29], which has been found to allow for the tracking of rapid CIR changes, although
then with only limited accuracy. To also allow for rapid changes in the CIR, the proposed
combined estimator, therefore, compares the fitting of the KBSCG estimate with that of the
IPNLMS estimate, using the reconstruction error

η =

∥∥∥ST
k ĥk − yk

∥∥∥2

∥yk∥2 (29)

If the IPNLMS is deemed to offer an improved fit, which will be the case if the CIR has
changed rapidly, this estimate will then be used instead. Furthermore, it is worth noting
that the BSCG strives to exploit the sparse structure of the CIR, whereas the KBSCG will also
impose a structured form of the CIR, which will further reduce the number of parameters
that need to be estimated. One may, therefore, expect that these estimators will achieve good
performance in low SNR conditions, as is also shown to be the case in the following, but
will have performance limitations at higher SNRs, as the assumptions will not necessarily
match the true CIR, thereby imposing constraints on the performance. This is illustrated in
the numerical section, where it is shown that the sparse and structured KBSCG and the
BSCG estimates will offer better performance in the low SNR cases, but will not be able to
achieve such high-quality estimates as alternative formulations as the SNR increases. In this
work, we were primarily interested in these low SNR cases, as these are the ones typically
occurring in underwater measurements. However, in the interest of generality, one may in
the higher SNR cases also improve on the found estimates. This may be accomplished by
examining if the BSCG estimate, initiated using the KBSCG estimate, offers an improved
fit of the observed data, which will be the case if the SNR is sufficiently high. If so, the
combined estimator then uses the BSCG estimate instead.

Next, the BSCG estimate was used as an initialization of the BRLS update; if this
estimate offers a lower reconstruction error, the resulting block combined estimator (BCE)
instead uses this update as the current estimate. This gradual performance improvement
for the discussed estimators is illustrated in Figure 4, where it may be seen that the BCE
will havethe best estimate, for each SNR.
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Figure 4. Performance of the discussed CIR estimators for the simulated data, as a function of
the SNR.

The proposed method is summarized in Algorithm 1. As discussed above, the algo-
rithm depends on a number of user-defined parameters. In Section 3.2, we discuss how
these parameters may be suitably selected.
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Algorithm 1 The BCE algorithm (our Matlab implementation will be provided on the
authors’ web pages upon publication).

1: Input: λ, δ, c1, c2, ξ1, ξ2, s(k), ỹ(k), M1, M2, P
2: Output: ĥk.
3: Estimate τk, and form yk.
4: Form Sk,1, Sk,2, Wk,1, Wk,2, etc.
5: while Still converging do
6: Update (23) and (28), keeping hk,2,p fixed.
7: Keep hk,1,p fixed, and update the corresponding equations.
8: end while
9: Update hk,1 and hk,2 using (23) and (28).

10: Compute ηKBSCG using (29).
11: Form the IPN update using [29], and compute the η IPN

12: if η IPN < ηKBSCG then
13: Form the BSCG update using (9), and compute ηBSCG.
14: if ηBSCG < η IPN then
15: Form the BRLS update, and compute ηBRLS.
16: if ηBRLS < ηBSCG then
17: ĥk = ĥBRLS

k .
18: else
19: ĥk = ĥBSCG

k .
20: end if
21: else
22: ĥk = ĥIPN

k .
23: end if
24: else
25: ĥk = ĥKBSCG

k .
26: end if

2.2. Detecting Weak Underwater Targets

In order to illustrate the better performance of the introduced CIR estimator, we
proceeded to examine how the found estimates may be used to detect a weak moving
target. Traditionally, such a detection may be formed by applying a matched filter (MF)
to the measured signal. However, as this signal will be severely corrupted and have a
blurring effect due to the reverberation, such a detector will perform poorly if one does
not compensate for the effect of the CIR. In order to do so, we proceeded to remove the
influence of the channel, forming the residual:

ẑk = yk − ŷk|k−1 = yk − sk ⋆ ĥk−1 (30)

where ĥk−1 denotes the BCE estimate of the CIR at time k − 1. The reason for using the CIR
estimate from pulse k− 1 when forming the kth residual is to allow the detector to determine
the relative change in the CIR between pulses k − 1 and k, thereby enabling the detection of
weak moving targets. During much of the time, the resulting residual will not contain any
of the sought targets; although, the resulting residual will still contain a notable structure
due to noise and weak reflectors not captured by the CIR estimate. Using a low-order
autoregressive (AR) model structure to detail the resulting residual, one may, reminiscent
of the procedure in [33], form a pre-whitened version of the residual as A(z)ẑk(ℓ) = n̂k(ℓ),
where ẑk(ℓ) denotes the ℓth sample of ẑk, n̂k(ℓ) is assumed to be well modeled as a circularly
symmetric complex white Gaussian noise with variance σ2

n , and the pre-whitening filter,
A(z), may be formed as (Using the measured sea data, we determined that a reasonable
model for A(z), for this measurement, is A(z) = 1 + 0.061z−2 + 0.034z−4. This polynomial
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will depend on the assumed underwater conditions and should be determined for each
setup using a small amount of secondary data, wherein no target is deemed present).

A(z) = 1 +
d

∑
ℓ=1

aℓz−ℓ (31)

As any target will cause a response that is a scaled and delayed version of the transmitted
pulse, sk, the target signal is known to lie in a (one-dimensional) subspace, H, spanned by
this signal. This allows the resulting detection problem to be formulated as

H0 : n̂k = wk

H1 : n̂k = Hθ + wk

where wk ∈ N (0, Rn) and θ denotes the corresponding scaling of H , with Rn denoting the
(true) residual covariance matrix, here modeled as a white process, Rn = σ2

nI. Let n̂k(τt)
denote the part of the residual signal n̂k corresponding to a delay of τt, i.e.,

n̂k(τt) =
[
n̂k

]
ℓ
, ℓ = ξt, . . . , ξt + N (32)

where ξt = ⌊ fsτt⌋, [·]ℓ is the ℓth index in the vector, and N is the length of the transmitted
signal, sk.

This allows an (approximative) generalized likelihood ratio test (GLRT), assuming a
target reflection at delay τt, to be formed as (see, e.g., [34])

ψ(n̂k(τt)) = (N − 1)
n̂k(τt)TΠHn̂k(τt)

n̂k(τt)TΠ⊥
Hn̂k(τt)

(33)

where ΠH denotes the projection onto H, formed as

ΠH = H
(

HTH
)−1

HT (34)

with Π⊥
H = I − ΠH denoting the projection onto the space orthogonal to H. Using (33), the

target is, therefore, deemed present if and only if ψ(n̂k(τt)) > γψ, otherwise not, where γψ

is a predetermined threshold value reflecting the acceptable probability of a false alarm
(p f ), where, under the assumptions made, p f = QF1,N−1(γψ), with QFr,ℓ(γψ) denoting the
complementary cumulative distribution function for an F-distribution with r numerator
degrees of freedom and ℓ denominator degrees of freedom [34].

As the delay of the target reflection, τt, is unknown, we proceeded to evaluate n̂k(τt)
over the shifted version of the received measurement, yk. An illustration of the resulting
detection variable with a target present at τt = 0.02 s is shown in Figure 5, where a target
with a signal-to-reverberation ratio (SRR) of 3 dB was added, with the SRR being defined as

SRR = 10 log
Ps

Pr
(35)

where Ps and Pr denote the power of the target signal and the reverberation, respectively.
As can be seen in Figure 5, the resulting detection variable is quite noisy due to the
imperfections in canceling the minor components in the CIR; to reduce the influence of
such unmodeled reflections, we formed a P-step sliding median measure of the formed
detection variable, notably reducing the influence of these reflections.

The resulting detection variable, Tk, for the kth pulse is then formed as this measure,
i.e.,

Tk = medianP

[
ψ(n̂k(τ))

]
(36)

where medianP[·] denotes the P-step sliding median filter. In this work, we used P = 100.
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Figure 5. Illustration of the detection variable, ψ(n̂k(τ)), as compared to the median filtered detection
variable, Tk, and the threshold γψ for p f = 5%. The target is present here at τt = 0.02 s, for
SNR = −10 dB and SRR = 3 dB.

3. Results and Discussion

In this section, we examine the performance of both the proposed CIR estimator and
the corresponding detection algorithm using simulated sea data.

3.1. Drift Compensation

We initially examined the drift compensation, which is illustrated in Figures 2 and 3
for the real sea data (see below for more details on these measurements). Here, the CIR was
estimated for each pulse using the LS; as can be seen in Figure 2, the CIR experienced a no-
table drift due to the motion of the transmitter and the receiver. By using the proposed drift
compensation of the measured data, this drift can be substantially reduced, as illustrated in
Figure 3. In order to evaluate this performance gain using simulated data, we proceeded to
simulate a channel mimicking the observed sea data channel, where the transmitted signal
is a wideband chirp signal, such that

s(t) = exp
[

j
(

2π f0t + πkt2
)]

, 0 ≤ t ≤ Tp (37)

where f0 = 3 kHz and k = 20 kHz/s represent the starting frequency and the chirp rate,
respectively, using a pulse width of Tp = 200 ms, as was also used in the real experiment.
We simulated a channel with M = 800 taps, based on the dominant components in Figure 2
(only showing the initial 200 taps), with uniformly distributed amplitudes with the variance
equal to the envelope of the LS estimated CIR channel, each CIR shifted using a sequentially
increasing delay to mimic the motion of the underwater acoustic channel resulting from
the movements of the transmitting and receiving platforms, and using a maximum drift of
no more than 5 ms. Each shift also included a random component to model the fluctuating
nature of the amplitude, simulated using a zero-mean unit variance uniformly distributed
random variable. Table 1 summarizes the reconstruction error, η, for the resulting CIR
estimate, ĥk, as compared to the CIR used to generate the simulations, hk, for SNR = 0 dB.
The values given are the average η for all simulations. Here, the additive noise was
simulated as a white additive Gaussian noise. As is clear from the table, the resulting
CIR estimates suffered a notable loss of performance if the drift was not compensated
for, as such errors then accumulated over time, degrading the performance further and
further for each consecutive pulse. As shown in the table, the drift compensation was able
to adequately compensate for the time-varying propagation delay, thereby allowing for
more-accurate CIR estimates.
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Table 1. The η of the CIR estimate for different algorithms, with or without drift compensation, for
SNR = 0 dB.

Algorithm η (dB)

SNR = 0 dB

Without With

LS 3.74 −4.47

BRLS [20] 0.91 −9.49

ℓ1−BRLS [19] 0.89 −9.63

IPNLMS [29] 2.39 −6.69

mNLMS [30] 0.58 −10.84

BSCG 0.39 −11.17

KBSCG 0.81 −9.59

BCE 2.38 −11.59

Next, we examined how fast the CIR estimates were able to adapt to a change in
the true CIR. Figure 6 shows the η for the estimated CIR when the channel was abruptly
changed at pulse 40, with the amplitudes of the channels redrawn. As can be seen in
the figure, the sparse and the structured estimates were able to both adapt faster to the
changing CIR and to yield a more-accurate estimate than the BRLS. Here, the SNR = 0 dB.
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Figure 6. Performance comparison for the discussed algorithms when the CIR changes abruptly at
pulse 40, for SNR = 0 dB.

3.2. Selecting Suitable Parameters

As has been noted, the proposed BCE algorithm, as well as the BSCG and KBSCG
variant, will depend on several user-specified parameters, which will all affect the resulting
performance of the estimator. For all estimators, the choice of λ in (4) and (5) will affect
the overall speed and variability of the algorithm, similar to all forms of exponentially
forgetting algorithms. Figure 7 examines how the performance is affected by the forgetting
factor for the simulated sea measurements. Here, as the channel was varying fairly slowly
(after compensating for the drift), it can be seen that a blockwise forgetting factor around
0.7 ≤ λ ≤ 0.9 is preferable. Thus, we selected λ = 0.7 to be able to track the real sonar
data well.
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Figure 7. Effect of forgetting factor on proposed algorithms in time-varying CIR case, for SNR = 0 dB.

Next, we initially examined the BSCG estimator, where the resulting update depends
on the sparsity parameter ξ and constant c, as shown in (7). The constants c and δ were only
included for stability purposes and will only mildly affect the resulting estimates. Here, we
selected these as c = δ = 10−4. The ξ parameter promotes a sparser solution and should,
in our experience, be selected in the range 0.6 < ξ ≤ 0.8. In this work, we used ξ = 0.7.
Figure 8 illustrates how η evolves for an increasing number of pulses for different values
of ξ, for SNR = 0 dB, supporting this recommendation. As may be seen in the figure, the
BSCG fit was, for this SNR, preferable with respect to the BRLS, for all settings of ξ (see
also Figure 8). The KBSCG estimator will be affected similarly by the choice of ξ1 and ξ2,
but also requires the selection of the model orders M1, M2, and P in (13).
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Figure 8. Effect of ξ on the BSCG algorithm, for SNR = 0 dB.

These parameters will affect the total number of unknown parameters to be estimated,
Ψ, where Ψ = (M1 + M2)P. Clearly, it is preferable to reduce the overall number of
parameters in order to simplify the estimation procedure and, therefore, also speed up the
adaptation to changes in the CIR. In order to determine a suitable model order, we formed
the Bayesian Information Criteria (BIC) selection rule [35]:

BIC(Ψ) = Ψln(L) + L log(η(Ψ)) (38)

where η(Ψ) denotes the error for the model using the Ψ parameters (which is uniquely
defined given the constraint that M1 ≥ M2 ≥ P) and L is the number of measured samples
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per pulse, in our case L = 4000. Figure 9 illustrates the resulting model order selection rule,
suggesting that Ψ = 280, which implies that M1 = 30, M2 = 26, and P = 5 are suitable
model ordersto minimize the fitting error while keeping the model order low. It may be
noted from the figure that, due to the various parameter combinations possible to form Ψ,
the resulting BIC curve will be non-smooth; although, this may, as can be seen, still be used
to determine suitable model orders.
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Figure 9. The BIC curve for SNR = 0 dB, illustrating the preferable choice of the model orders.

3.3. Matched-Filter-Based Detection

Next, we examined how the proposed CIR estimates can be used to detect weak mov-
ing targets. In doing so, we added a simulated target signal to the measured signal, where
the target signal is modeled as the reflection of a moving target between the transmitter
and receiver, gradually moving away from the receiver such that the relative reflection
is shifted 3 ms per consecutive pulse. In order to mimic the local scattering of the target,
the primary target response was modeled here as a delay of 33 ms with unit amplitude.
The local scattering of the target was modeled using (normally distributed) randomly
generated weak reflections following the main reflection. Figure 10 illustrates a typical
example of the (noise-free) target impulse response; the measured target response signal
was modeled as the convolution of this response by the transmitted signal, being scaled to
yield the examined SRR. The target response was added here at the eight pulse to allow
the algorithm to converge prior to forming the detection variable at this time. In these
simulations, we used an SNR of −15 dB and an SRR of −3 dB.
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Figure 10. An example of the simulated noise-free target impulse response.

Figure 11 shows the resulting receiver operating characteristic (ROC) curve formed us-
ing MC = 1000 Monte Carlo simulations for the detection variable Tk, defined in (36), when



Remote Sens. 2024, 16, 476 14 of 19

employing the matched subspace detector to the residual n̂k(τt) in (32), formed using the
discussed CIR estimators. As a comparison, the figure also shows the performance of this
detector when applied instead directly to the measured signal, yk, without any CIR com-
pensation. This detector is denoted here as the uncompensated matched filter (UMF). From
the figure, it is clear that the CIR compensation notably improved the detector performance,
with the more-accurate CIR estimates gradually improving the detection performance.
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Figure 11. Estimated ROC for the resulting detectors, using a simulated CIR, when observing a single
pulse containing the target moving with velocity 1.5 m/s, for SNR = −15 dB and SRR = −3 dB.

The poor performance of the UMF was a result of the reverberation, causing the mea-
sured signal to be formed and overlapped by multiple shifted versions of the transmitted
signal; when forming the detection variable, one cannot, as a result, distinguish the reflec-
tions from the target from those of the reverberation, which caused the poor performance.
The proposed method instead uses the residual signal after the CIR compensation, reducing
the influence of the reverberation, to form the detection variable, thereby allowing for the
more-robust decision. Given that the reverberation is relatively stationary as compared
to the reflections of the moving reflector, one may, in this way, exploit the changes in the
sound field to detect the moving target.

3.4. Experimental Results

We finally examined a real sea measurement in a shallow sea in May 2022, in Laoshan,
Qingdao, China, having a depth of 10 m, where a single transmitter placed at a depth of
4 m was transmitting a linear frequency-modulated pulse sequence covering 3 to 7 kHz,
using a sampling rate of fs = 16 kHz. The pulse repeat time (PRT) used was 3.3 s, with a
pulse width of 0.2 s. The transmitted signal was measured using the same sampling rate by
a receiver positioned 5 km away from the transmitter, at a depth of 2 m. The main system
parameters are listed in Table 2.

Table 2. Underwater experiment parameters.

Parameter Value

Starting frequency 3 kHz
Bandwidth 4 kHz
Sampling frequency 16 kHz
Pulse width 200 ms
PRT 3.3 s
Tx depth 4 m
Rx depth 2 m
Sea depth 10 m
Horizontal range of Tx and Rx 5 km
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Both the transmitter and the receiver were almost static, being fixed to an underwater
chain experiencing only a mild drift; although, as shown in Figure 2, the resulting channel
was still drifting notably. As can be seen in Figure 2, as well as in the drift-compensated
CIR estimate shown in Figure 3, the CIR had a few dominant reflections, corresponding
to the direct path, the bottom reflection, as well as the surface reflection. Figure 12 shows
the resulting BCE estimate, using the noted settings, for the measurement data. As can be
seen in the figure, the estimator was able to estimate the sparse structure of the CIR well,
without suffering from the notable spurious estimates present in the LS estimate.
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Figure 12. Pulse-to-pulse BCE estimate of the drift-compensated CIR from high SNR sea data.

Figure 13 illustrates how well the discussed methods were able to fit the observed
data as the SNR was reduced; here, we normalized the power of the measured signal and
added an additive white Gaussian noise corresponding to the noted SNR, computing the
reconstruction error using the difference between the sea data (without additive noise) and
the reconstructed signal. As can be seen in Figure 13, paralleling the simulation results in
Figure 4, the proposed estimator, as expected, offered superior performance in the low SNR
case, where the use of the structured sparsity was beneficial.
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Figure 13. Performance comparison of the CIR estimates for the measured sea data, for varying
noise levels.

Next, we used the measured sea data illustrated in Figure 2, but now included the
reflection of a target (modeled as above), moving away from the transmitter with a velocity
1.5 m/s, with an SRR of −2.5 dB. It is worth noting that, as the residual in (30) was formed
using the CIR estimate from pulse k − 1, the residual will contain a contribution both from
the new location of the target, as well as the lack of a contribution at its earlier location,
thereby increasing the power of the target signal in (33). Figure 14 shows the resulting
detection variable Tk, defined in (36), for the 8th, 9th, and 10th pulses, when using the BCE
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estimator. As can be seen in the figure, although the CIR estimate was able to describe parts
of the sea channel, the residual n̂k still retained some reflections, partly due to the varying
SNR of the sea measurements between pulses, but also due to the unexplained parts of
the sea channel, causing large values of Tk for the initial part of n̂k for all three pulses.
The reflecting target can be seen in Figure 14 at a delay of about 0.033 s, corresponding to
sample 528, for the eight pulse, and then moving 48 samples (3 ms) in each of the following
pulses due to the target’s velocity (it should be noted that the approach will also work for
the detection of reflectors moving with non-constant velocity, although at some loss, as the
shifted reflection will align less ideally in such a case).
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Figure 14. The detection variable Tk, defined in (36), for three consecutive pulses for a simulated
target moving with velocity 1.5 m/s, with SNR = −12.3 dB, and SRR = −2.5 dB.

As the unexplained part of the channel caused significant reflections, the detector may
well fail to detect the presence of weaker targets. In order to improve the detection, we
proceeded to exploit the motion of the target, assuming that it will exhibit a reasonably
constant velocity during a short interval. We, therefore, formed the cross-correlation
between consecutive pulses, ρTk ,Tk−1 , and then, determined the common shift between
pulses, reflecting the target’s constant velocity, as

kτK = max
K

∑
k=1

ρTk ,Tk−1 (39)

for K pulses. By then circularly shifting the kth detection variable, Tk, with kτK , forming T̃k,
all the shifted detection variables T̃k may be summed coherently, creating a new detection
variable T̆K, which is then used to determine the presence or the absence of a target in
the K measurements. The shifted T̃k for the 8th, 9th, and 10th pulses, together with the
resulting T̆K are shown in Figure 15, illustrating how the resulting detection variable can
efficiently exploit the response of the target in the pulses, reducing the influence of the still
unexplained sea channel.

Figure 16 shows the resulting detection performance of the detection variable T̆K,
using K = 4 pulses with a simulated target with SRR = −2.5 dB. In each of the MC = 1000
Monte Carlo simulations used to form the ROC, an additive Gaussian noise was added to
the real measurement, yielding an SNR of −12.3 dB. For this low SRR and SNR, the UMF
failed to allow for a viable detection and was, therefore, in the interest of clarity, omitted
from the figure. As can be seen in Figure 16, the combined detection variable, T̆K, was able
to accurately detect the weak target using the structured CIR estimates, again showing the
excellent performance of the proposed detector.
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Figure 15. The shifted detection variables T̃k for the three pulses shown in Figure 14, together with
the combined detection variable T̆K .

Consistent with the simulation results shown in Figure 11, one may note that the
structured CIR estimators were also able to track the channel fluctuations for the measured
sea data sufficiently fast to allow for an improved detection, as compared to the non-
structured estimators.
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Figure 16. Estimated ROC for the resulting detectors, using the discussed CIR estimates with the
real sea data, when observing K = 4 pulses containing a target moving with velocity 1.5 m/s, with
SNR = −12.3 dB and SRR = −2.5 dB.

4. Conclusions

In this paper, we introduced a sparse and structured block-updating channel impulse
response (CIR) estimator. By exploiting a sparse and structured approximation of the
CIR, we formulated a block-updated conjugate gradient formulation that allowed the
CIR estimator to provide accurate performance even in noisy environments, whereas the
estimator also allowed for a gradual relaxation of these constraints for higher SNR cases,
enabling the estimator to retain the better performance of the estimators without posing
such restrictions. We also included a discussion of how the required user parameters should
be selected and how these affect the performance of the method, as well as introduced a
matched subspace detector formed on the resulting channel residual. The proposed CIR
estimate was evaluated by comparing it to several recent CIR estimators, for both simulated
and measured sea data, illustrating both the better performance of the CIR estimate and
the resulting improved detection performance. In the future, we will aim to incorporate an
adaptive selection of the hyperparameters used, as well as examine how the target motion
affects the detectability of a target.
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