Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion
Abstract
1. Introduction
2. Optimization Method
3. Optimization Design
3.1. Data Fusion Processor Design
3.2. Data Fusion Algorithm
3.3. Algorithmic Mathematical Analysis
3.4. Simulation Analysis
4. Experimental System Design
- FSM: S-330 piezo steering mirror by Physik Instrumente (PI) in Germany, with an angular resolution of 100 nrad and a motion range of 5 mrad;
- CCD: SH640 small high-performance shortwave infrared camera produced by China TEKWIN SYSTEMS; it features a resolution of 640 × 512 pixels and a pixel pitch of 15 m;
- QPD: GD4542-20MHZ-12K photodetector receiving module developed by the 44th Research Institute of China Electronics Technology Group Corporation, with a noise-equivalent power (NEP) better than 4.5 ;
5. Results
- rad/pixel
- rad/V
- rad/rad
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 61102. [Google Scholar] [CrossRef] [PubMed]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K. Prospects for fundamental physics with LISA. Gen. Relativ. Gravit. 2020, 52, 81. [Google Scholar] [CrossRef]
- Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 35010. [Google Scholar] [CrossRef]
- Danzmann, K.; Prince, T.A.; Binetruy, P.; Bender, P.; Buchman, S.; Centrella, J.; Cerdonio, M.; Cornish, N.; Cruise, M.; Cutler, C.J.; et al. LISA: Unveiling a hidden Universe. Assess. Study Rep. ESA/SRE 2011, 3, 1–129. [Google Scholar]
- Gao, R.; Liu, H.; Luo, Z.; Jin, G. Introduction of laser pointing scheme in the Taiji program. Chin. Opt. 2019, 12, 425–431. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Cui, Z.; Liu, H.; Liu, A.; Qian, X.; Wang, X.; Yao, Z.; Yang, Q.; Jia, J. On-ground demonstration of laser-link construction for space-based detection of gravitational waves. Opt. Lasers Eng. 2023, 160, 107287. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Wu, Y.; Hu, W.; Jin, G. The Taiji program: A concise overview. Prog. Theor. Exp. Phys. 2020, 2021, 5A108. [Google Scholar] [CrossRef]
- Dong, Y. Inter-Satellite Interferometry: Fine Pointing and Weak-Light Phase-Locking Techniques for Space Gravitational Wave Observatory. Ph.D. Thesis, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Henein, S.; Spanoudakis, P.; Schwab, P.; Kjelberg, I.; Giriens, L.; Welte, Y.; Dassa, L.; Greger, R.; Langer, U. Design and development of the point-ahead angle mechanism for the laser interferometer space antenna (lisa). In Proceedings of the 13th European Space Mechanisms & Tribology Symposium, Vienna, Austria, 23–25 September 2009; Citeseer: Zurich, Switzerland, 2009; pp. 23–25. [Google Scholar]
- Sudey Jr, J.; Schulman, J. In-orbit measurements of Landsat-4 thematic mapper dynamic disturbances. Acta Astronaut. 1985, 12, 485–503. [Google Scholar] [CrossRef]
- Cirillo, F. Controller Design for the Acquisition Phase of the LISA Mission Using a Kalman Filter; University of Pisa: Pisa, Italy, 2007. [Google Scholar]
- Schumaker, B.L. Disturbance reduction requirements for LISA. Class. Quantum Gravity 2003, 20, S239. [Google Scholar] [CrossRef]
- Bailes, M.; Berger, B.K.; Brady, P.; Branchesi, M.; Danzmann, K.; Evans, M.; Holley-Bockelmann, K.; Iyer, B.; Kajita, T.; Katsanevas, S.; et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 2021, 3, 344–366. [Google Scholar] [CrossRef]
- Flanagan, E.E.; Hughes, S.A. The basics of gravitational wave theory. New J. Phys. 2005, 7, 204. [Google Scholar] [CrossRef]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J. In-orbit performance of the GRACE follow-on laser ranging interferometer. Phys. Rev. Lett. 2019, 123, 31101. [Google Scholar] [CrossRef]
- Wuchenich, D.M.; Mahrdt, C.; Sheard, B.S.; Francis, S.P.; Spero, R.E.; Miller, J.; Mow-Lowry, C.M.; Ward, R.L.; Klipstein, W.M.; Heinzel, G.; et al. Laser link acquisition demonstration for the GRACE Follow-On mission. Opt. Express 2014, 22, 11351–11366. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, J.; Qiang, J.; Zhang, L.; Wang, J. Predictive filtering-based fast reacquisition approach for space-borne acquisition, tracking, and pointing systems. Opt. Express 2014, 22, 26462–26475. [Google Scholar] [CrossRef]
- Meshksar, N.; Mehmet, M.; Isleif, K.S.; Heinzel, G. Applying Differential Wave-Front Sensing and Differential Power Sensing for Simultaneous Precise and Wide-Range Test-Mass Rotation Measurements. Sensors 2021, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.Z.; Liang, Y.R.; Yeh, H.C. Analysis of non-linearity in differential wavefront sensing technique. Opt. Lett. 2016, 41, 914–917. [Google Scholar] [CrossRef]
- Gao, R.; Liu, H.; Zhao, Y.; Luo, Z.; Jin, G. High-precision laser spot center positioning method for weak light conditions. Appl. Opt. 2020, 59, 1763–1768. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Cui, Z.; Liu, H.; Jia, J.; Luo, Z.; Jin, G. Zero-Offset Analysis on Differential Wavefront Sensing Technique in Gravitational Wave Detection Missions. Microgravity Sci. Technol. 2023, 35, 6. [Google Scholar] [CrossRef]
- Heinzel, G.; Álvarez, M.D.; Pizzella, A.; Brause, N.; Delgado, J.J.E. Tracking Length and Differential-Wavefront-Sensing Signals from Quadrant Photodiodes in Heterodyne Interferometers with Digital Phase-Locked-Loop Readout. Phys. Rev. Appl. 2020, 14, 54013. [Google Scholar] [CrossRef]
- Brown, D.; Cao, H.T.; Ciobanu, A.; Veitch, P.; Ottaway, D. Differential wavefront sensing and control using radio-frequency optical demodulation. Opt. Express 2021, 29, 15995–16006. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, S.; Neild, A.; He, C.; Armstrong, J. Visible light positioning using an aperture and a quadrant photodiode. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Toyoda, M.; Araki, K.; Suzuki, Y. Measurement of the characteristics of a quandrant avalanche photo-diode application to a laser tracking system. Opt. Eng. 2002, 41, 145–149. [Google Scholar] [CrossRef]
- Cochocki, A.; Unbehauen, R. Neural Networks for Optimization and Signal Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Liu, H.; Luo, Z.; Jin, G. The development of phasemeter for Taiji space gravitational wave detection. Microgravity Sci. Technol. 2018, 30, 775–781. [Google Scholar] [CrossRef]
- Liu, H.S.; Yu, T.; Luo, Z.R. A low-noise analog frontend design for the Taiji phasemeter prototype. Rev. Sci. Instruments 2021, 92, 054501. [Google Scholar] [CrossRef]
- Cui, Z.; Qian, X.G.; Shi, H.Q.; Ye, Z.J.; Wang, X.; Xing, C.W.; Gao, R.H.; Jia, J.J.; Wang, Y.K.; Wang, J.Y. Research on noise suppression of inter-satellite laser pointing jitter. In Proceedings of the Earth and Space: From Infrared to Terahertz (ESIT 2022), Nantong, China, 17–19 September 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12505, pp. 347–356. [Google Scholar] [CrossRef]
CCD | DPS | DWS | CCD&DPS | CCD&DWS | DPS&DWS | CCD&DPS&DWS | |
---|---|---|---|---|---|---|---|
RMS (rad) | |||||||
Variance (rad2) | |||||||
Amplitude (rad) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Wang, X.; Yang, J.; Shi, H.; Liang, B.; Qian, X.; Ye, Z.; Jia, J.; Wang, Y.; Wang, J. Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion. Remote Sens. 2024, 16, 4179. https://doi.org/10.3390/rs16224179
Cui Z, Wang X, Yang J, Shi H, Liang B, Qian X, Ye Z, Jia J, Wang Y, Wang J. Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion. Remote Sensing. 2024; 16(22):4179. https://doi.org/10.3390/rs16224179
Chicago/Turabian StyleCui, Zhao, Xue Wang, Jinke Yang, Haoqi Shi, Bo Liang, Xingguang Qian, Zongjin Ye, Jianjun Jia, Yikun Wang, and Jianyu Wang. 2024. "Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion" Remote Sensing 16, no. 22: 4179. https://doi.org/10.3390/rs16224179
APA StyleCui, Z., Wang, X., Yang, J., Shi, H., Liang, B., Qian, X., Ye, Z., Jia, J., Wang, Y., & Wang, J. (2024). Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion. Remote Sensing, 16(22), 4179. https://doi.org/10.3390/rs16224179