Downlink Analysis of a Low-Earth Orbit Satellite Considering an Airborne Interference Source Moving on Various Trajectory
Abstract
1. Introduction
2. Scenario of Interference Source Moving along the Satellite Trajectory
2.1. LEO Satellite Downlink Scenario and J/S Ratio Calculation
2.2. Derivation of Relative Angle Difference ψ with Sidelobe Gain
3. Analysis of the LEO Satellite Downlinks in Interference Situations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, M.J.; Lim, S.; Shin, D.C. Analysis method for determining optimal synthetic aperture time using estimated range and doppler cone angle at the center of synthetic aperture length. J. Electromagn. Eng. Sci. 2023, 23, 205–211. [Google Scholar] [CrossRef]
- Kang, Y.G.; Kim, C.K.; Park, S.O. Ocean image formation algorithm using altimeter data for next generation satellite SAR. J. Electromagn. Eng. Sci. 2022, 22, 85–94. [Google Scholar] [CrossRef]
- Lewark, U.J.; Antes, J.; Walheim, J.; Timmermann, J.; Zwick, T.; Kallfass, I. Link budget analysis for future E-band gigabit satellite communication links (71–76 and 81–84 Ghz). CEAS Space J. 2013, 4, 41–46. [Google Scholar] [CrossRef]
- Cakaj, S.; Malarić, K. Rigorous analysis on performance of LEO satellite ground station in urban environment. Int. J. Satell. Commun. Netw. 2007, 25, 619–643. [Google Scholar] [CrossRef]
- Li, S.Y.; Liu, C.H. Modeling the effects of ionospheric scintillations on LEO satellite communications. Int. J. Satell. Commun. Netw. 2004, 8, 147–149. [Google Scholar] [CrossRef]
- Kilcoyne, D.K.; Rowe, S.A.; Headley, W.C.; Mortensen, D.J.; McGwier, R.W.; Leffke, Z.J.; Reinhart, R.C. Link adaptation for mitigating earth-to-space propagation effects on the NASA scan testbed. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016. [Google Scholar]
- Barbarić, D.; Vuković, J.; Babic, D. Link budget analysis for a proposed Cubesat Earth observation mission. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Opatija, Croatia, 21–25 May 2018; pp. 133–138. [Google Scholar]
- Reiten, K.; Schlanbusch, R.; Kristiansen, R.; Vedal, F.; Nicklasson, P.J.; Berntsen, P.C. Link and doppler analysis for space-based AIS reception. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; pp. 556–561. [Google Scholar]
- Xu, H.; Zhang, J.; Sun, Z.; Yang, H. Event-based wireless tracking control for a wheeled mobile robot against reactive jamming Attacks. IEEE Trans. Control Netw. Syst. 2023, 10, 1925–1936. [Google Scholar] [CrossRef]
- Lineswala, P.L.; Shah, S.N.; Shah, R. Different categorization for jammer: The enemy of satellite navigation. In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 282–287. [Google Scholar]
- Sathaye, H.; Noubir, G.; Ranganathan, A. On the implications of spoofing and jamming aviation datalink applications. In Proceedings of the 38th Annual Computer Security Applications Conference, Austin, TX, USA, 5–9 December 2022; pp. 548–560. [Google Scholar]
- Senapati, M.; Anand, B.; Barsaiyan, V.; Rajalakshmi, P. Geo-referencing system for locating objects globally in LiDAR point cloud. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–5. [Google Scholar]
- Wang, Y.; Huynh, G.; Williamson, C. Integration of Google Maps/Earth with microscale meteorology models and data visualization. Comput. Geosci. 2013, 61, 23–31. [Google Scholar] [CrossRef]
- Merabtine, N.; Boualleg, A.; Benslama, M. Analysis of radiation patterns and feed illumination of the reflector antenna using the physical and geometrical optics. Semicond. Phys. Quant. 2006, 9, 53–57. [Google Scholar] [CrossRef]
- Piu, H.; Rahmat Samii, Y. Analysis and characterization of multilayered reflector antennas: Rain/snow accumulation and deployable membrane. IEEE Trans. Antennas Propagat. 1998, 46, 1593–1605. [Google Scholar]
- Hung, C.; Mittra, R. Secondary pattern and focal region distribution of reflector antennas under wide-angle scaning. IEEE Trans. Antennas Propagat. 1983, 31, 756–763. [Google Scholar] [CrossRef]
- Rusch, W. The current state of the reflector antenna art. IEEE Trans. Antennas Propagat. 1984, 32, 313–329. [Google Scholar] [CrossRef]
- Moreira, F.J.; Prata, A. Generalized classical axially symmetric dual-reflector antennas. IEEE Trans. Antennas Propagat. 2001, 49, 547–554. [Google Scholar] [CrossRef]
- Duan, D.W.; Rahmat-Samii, Y. A generalized diffraction synthesis technique for high performance reflector antennas. IEEE Trans. Antennas Propagat. 1995, 43, 27–40. [Google Scholar] [CrossRef]
- Hoferer, R.A.; Rahmat-Samii, Y. Subreflector shaping for antenna distortion compensation: An efficient Fourier-Jacobi expansion with GO/PO analysis. IEEE Trans. Antennas Propagat. 2002, 50, 1676–1687. [Google Scholar] [CrossRef]
Parameters | Values | |
---|---|---|
Frequency | 8 GHz | |
Ground station | Bore-sight gain (ξ = 0°) | 59 dBi |
Sidelobe gain (ξ = ψ°) | ||
LEO satellite | Satellite altitude | 550 km |
Transmission power | 30 dBm | |
Bore-sight gain | 4.4 dBi | |
Free-space path loss | ||
Airborne interference source | Transmission power | 70 dBm |
Bore-sight gain | 30 dBi | |
Velocity | 850 km/h | |
Interference source altitude hi | 3 km, 6 km, 9 km, and 12 km | |
Free-space path loss |
Trajectory | Altitude hi (km) | Path 1 | Path 2 | Path 3 | |||
---|---|---|---|---|---|---|---|
ψave (°) | Jave/Save Ratio (dB) | ψave (°) | Jave/Save Ratio (dB) | ψave (°) | Jave/Save Ratio (dB) | ||
1 | 3 | 73.2 | −22.3 | 80.8 | −29.5 | 83.6 | −33.6 |
6 | 72.2 | −22.1 | 80.3 | −29.4 | 83.3 | −33.5 | |
9 | 71.1 | −21.9 | 79.8 | −29.2 | 82.9 | −33.4 | |
12 | 70.2 | −21.7 | 79.3 | −29.1 | 82.6 | −33.4 | |
2 | 3 | 59.4 | −18.7 | 67.1 | −26.0 | 70.0 | −30.3 |
6 | 58.4 | −18.4 | 66.6 | −25.9 | 69.7 | −30.2 | |
9 | 57.3 | −18.2 | 66.0 | −25.8 | 69.3 | −30.1 | |
12 | 56.3 | −17.9 | 65.5 | −25.7 | 68.9 | −30.1 | |
3 | 3 | 40.7 | −12.2 | 48.4 | −20.1 | 51.3 | −24.2 |
6 | 39.6 | −11.9 | 47.8 | −19.9 | 50.9 | −24.1 | |
9 | 38.5 | −11.5 | 47.3 | −19.7 | 50.6 | −24.0 | |
12 | 37.5 | −11.1 | 46.8 | −19.6 | 50.2 | −23.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, E.; Park, Y.; Kim, J.; Choo, H. Downlink Analysis of a Low-Earth Orbit Satellite Considering an Airborne Interference Source Moving on Various Trajectory. Remote Sens. 2024, 16, 321. https://doi.org/10.3390/rs16020321
Kang E, Park Y, Kim J, Choo H. Downlink Analysis of a Low-Earth Orbit Satellite Considering an Airborne Interference Source Moving on Various Trajectory. Remote Sensing. 2024; 16(2):321. https://doi.org/10.3390/rs16020321
Chicago/Turabian StyleKang, Eunjung, YoungJu Park, JungHoon Kim, and Hosung Choo. 2024. "Downlink Analysis of a Low-Earth Orbit Satellite Considering an Airborne Interference Source Moving on Various Trajectory" Remote Sensing 16, no. 2: 321. https://doi.org/10.3390/rs16020321
APA StyleKang, E., Park, Y., Kim, J., & Choo, H. (2024). Downlink Analysis of a Low-Earth Orbit Satellite Considering an Airborne Interference Source Moving on Various Trajectory. Remote Sensing, 16(2), 321. https://doi.org/10.3390/rs16020321