Estimation of Rainfall via IMERG-FR and Its Relationship with the Records of a Rain Gauge Network with Spatio-Temporal Variation, Case of Study: Mexican Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rain Gauge and Automated Rain GaugeNetwork Data
2.3. IMERG Data
2.4. Evaluation Techniques
2.4.1. Temporal Evaluation
2.4.2. Topographical Evaluation
2.4.3. Rainfall Intensity-Based Evaluation
2.4.4. Spatial-Temporal Evaluation Rain Gauge Density
2.4.5. Distance to Centroid of IMERG-FR Pixel Evaluation
2.4.6. Climatic Evaluation
2.5. Estimation Methods
3. Results
3.1. Sample Differences between the Observed and Satellite Data
3.2. Temporal-Based Evaluation
3.3. Topographical Evaluation
3.4. Rainfall Intensity-Based Evaluation
3.5. Gauge Density-Based Evaluation
3.6. Distance to Centroid of IMERG-FR Pixel Evaluation
3.7. Climatic Evaluation
4. Discussion
4.1. Temporal Resolution Evaluation
4.2. Topographic Evaluation
4.3. Rainfall Intensity Evaluation
4.4. Gauge Density Evaluation
4.5. Climatic Evaluation
5. Conclusions
- IMERG-FR heavily underestimated the heavy rainfall events (>50 mm/day and >7.6 mm/h) with a difference between −63.54 and −23.58 mm/day and −25.29 and −11.74 mm/30 min.
- Temporarily, IMERG-FR performed well at daily, monthly, and seasonal temporal resolutions, with the best results in the monthly temporal resolution against the automated rain gauges (R = 0.83 and CSI = 1), and the worst performance was at the half-hour temporal resolution (R = 0.23 and CSI = 0.24). The differences of precipitation between IMERG-FR and the rain gauge network were higher in the wetter months (July, August, and September).
- Topographically, IMERG-FR performed best at the 1902–2101 m.a.s.l. elevation range, with the lowest bias and error values and the highest detection abilities.
- According to the PDF of the rainfall intensity evaluation, the very light rainfall events represent the majority of the daily rainfall events (64.44 to 77.03%), and the light rainfall events represent the bulk of the sub-daily rainfall events (98.74 to 98.86%), where IMERG-FR identified the occurrence of daily and sub-daily rainfall events with great accuracy at all rainfall intensity classes with reference to WMO and AMS, of which the best fit was in the sub-daily classes, probably for the great quantity of 0 rainfall values, but in the daily classes, IMERG-FR tended to underestimate the frequency of 0 to 1 and >25 mm/day rainfall events, as well as overestimate the rate of 1 to 25 mm/day rainfall events, of which the automated rain gauges slightly fitted better with IMERG-FR than the rain gauges at the daily temporal resolution.
- At the gauge density evaluation, the performance incremented with the augmentation of the gauge density, the best performance was given at two automated rain gauges per IMERG-FR pixel density (R = 0.74 and CSI = 0.70), indicating that the automated rain gauges are better tools to measure rainfall than the rain gauges, despite these having three rain gauges per IMERG-FR pixel density.
- From the three evaluated dry climates, BS1kw(w) has the best results with small differences, probably because it is the one that presents less rainfall in the winter season (<5 mm), compared with the other two (5 to 10.2 mm).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of New Satellite Rainfall Products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Feng, H.; Yu, Q.; Zou, Y.; Liu, F.; Pulatov, B. Performance Evaluation and Correction of Precipitation Data Using the 20-Year IMERG and TMPA Precipitation Products in Diverse Subregions of China. Atmos. Res. 2021, 249, 105304. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and Improvements of GPM IMERG upon TRMM 3B42 Precipitation Product under Complex Topographic and Climatic Conditions over Hexi Region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG Precipitation Products with the Point Rain Gauge Records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Zakaria Lukwasa, A.; Zeleke, T.T.; Beketie, K.T.; Ayal, D.Y. Spatio-Temporal Rainfall Variability and Its Linkage with Large Scale Climate Oscillations over the Republic of South Sudan. Clim. Serv. 2022, 28, 100322. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Cao, Y.; Nan, Z.; Wang, W.; Ge, Y.; Wang, P.; Yu, W. Evaluation and Integration of the Top-down and Bottom-up Satellite Precipitation Products over Mainland China. J. Hydrol. 2020, 581, 124456. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 Precipitation Products over Pakistan. Atmos. Res. 2021, 249, 105341. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of Hydrological Utility of IMERG Final Run V05 and TMPA 3B42V7 Satellite Precipitation Products in the Yellow River Source Region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Eltazarov, S.; Bobojonov, I.; Kuhn, L.; Glauben, T. Mapping Weather Risk – A Multi-Indicator Analysis of Satellite-Based Weather Data for Agricultural Index Insurance Development in Semi-Arid and Arid Zones of Central Asia. Clim. Serv. 2021, 23, 100251. [Google Scholar] [CrossRef]
- Torres-Batlló, J.; Martí-Cardona, B. Precipitation Trends over the Southern Andean Altiplano from 1981 to 2018. J. Hydrol. 2020, 590, 125485. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Aryastana, P.; Liu, G.-R.; Huang, W.-R. Assessment of Satellite Precipitation Product Estimates over Bali Island. Atmos. Res. 2020, 244, 105032. [Google Scholar] [CrossRef]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Jia, L.; Xie, G.; Li, S.; Zhang, Y. Correcting GPM IMERG Precipitation Data over the Tianshan Mountains in China. J. Hydrol. 2019, 575, 1239–1252. [Google Scholar] [CrossRef]
- Meng, C.; Mo, X.; Liu, S.; Hu, S. Extensive Evaluation of IMERG Precipitation for Both Liquid and Solid in Yellow River Source Region. Atmos. Res. 2021, 256, 105570. [Google Scholar] [CrossRef]
- Morsy, M.; Scholten, T.; Michaelides, S.; Borg, E.; Sherief, Y.; Dietrich, P. Comparative Analysis of TMPA and IMERG Precipitation Datasets in the Arid Environment of El-Qaa Plain, Sinai. Remote Sens. 2021, 13, 588. [Google Scholar] [CrossRef]
- Manz, B.; Páez-Bimos, S.; Horna, N.; Buytaert, W.; Ochoa-Tocachi, B.; Lavado-Casimiro, W.; Willems, B. Comparative Ground Validation of IMERG and TMPA at Variable Spatiotemporal Scales in the Tropical Andes. J. Hydrometeorol. 2017, 18, 2469–2489. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and Spatial Evaluation of Satellite-Based Rainfall Estimates across the Complex Topographical and Climatic Gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef]
- Huang, W.-R.; Chang, Y.-H.; Liu, P.-Y. Assessment of IMERG Precipitation over Taiwan at Multiple Timescales. Atmos. Res. 2018, 214, 239–249. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.O. Evaluation of the Global Precipitation Measurement (GPM) Satellite Rainfall Products over the Lower Colorado River Basin, Texas. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 882–898. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR Satellite Precipitation Products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Freitas, E. da S.; Coelho, V.H.R.; Xuan, Y.; Melo, D. de C.D.; Gadelha, A.N.; Santos, E.A.; Galvão, C. de O.; Ramos Filho, G.M.; Barbosa, L.R.; Huffman, G.J.; et al. The Performance of the IMERG Satellite-Based Product in Identifying Sub-Daily Rainfall Events and Their Properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
- Kumar, M.; Hodnebrog, Ø.; Sophie Daloz, A.; Sen, S.; Badiger, S.; Krishnaswamy, J. Measuring Precipitation in Eastern Himalaya: Ground Validation of Eleven Satellite, Model and Gauge Interpolated Gridded Products. J. Hydrol. 2021, 599, 126252. [Google Scholar] [CrossRef]
- Li, X.; Sungmin, O.; Wang, N.; Huang, Y. Evaluation of the GPM IMERG V06 Products for Light Rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2021, 268, 112754. [Google Scholar] [CrossRef]
- INEGI Resumen de Zacatecas. Available online: https://cuentame.inegi.org.mx/monografias/informacion/zac/ (accessed on 27 February 2023).
- Pita-Díaz, O.; Ortega-Gaucin, D. Analysis of Anomalies and Trends of Climate Change Indices in Zacatecas, Mexico. Climate 2020, 8, 55. [Google Scholar] [CrossRef]
- INEGI Continuo de Elevaciones Mexicano (CEM). Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 21 June 2023).
- CONABIO Portal de Información Geográfica—CONABIO. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/clima/climas/clima1mgw (accessed on 21 June 2023).
- CONAGUA Sistema de Información Hidrológica (SIH). Available online: https://sih.conagua.gob.mx/ (accessed on 15 March 2023).
- Tamm, O.; Saaremäe, E.; Rahkema, K.; Jaagus, J.; Tamm, T. The Intensification of Short-Duration Rainfall Extremes Due to Climate Change – Need for a Frequent Update of Intensity–Duration–Frequency Curves. Clim. Serv. 2023, 30, 100349. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. Algorithm Theoretical Basis Document (ATBD) Version 06: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Available online: https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf (accessed on 16 April 2022).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Jackson, T. GES DISC Dataset: GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=imerg (accessed on 16 April 2022).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 978-1-4414-1269-0. [Google Scholar]
- Zhou, Z.; Guo, B.; Xing, W.; Zhou, J.; Xu, F.; Xu, Y. Comprehensive Evaluation of Latest GPM Era IMERG and GSMaP Precipitation Products over Mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- American Meteorological Society Rain—Glossary of Meteorology. Available online: https://glossary.ametsoc.org/wiki/Rain (accessed on 24 May 2023).
- Moazami, S.; Najafi, M.R. A Comprehensive Evaluation of GPM-IMERG V06 and MRMS with Hourly Ground-Based Precipitation Observations across Canada. J. Hydrol. 2021, 594, 125929. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi Time-Scale Evaluation of High-Resolution Satellite-Based Precipitation Products over Northeast of Austria. Atmos. Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Zhu, Y.; Cui, Y.; Wang, X. Evaluating the Hydrological Utility of Latest IMERG Products over the Upper Huaihe River Basin, China. Atmos. Res. 2019, 225, 17–29. [Google Scholar] [CrossRef]
- Li, Z.; Tang, G.; Hong, Z.; Chen, M.; Gao, S.; Kirstetter, P.; Gourley, J.J.; Wen, Y.; Yami, T.; Nabih, S.; et al. Two-Decades of GPM IMERG Early and Final Run Products Intercomparison: Similarity and Difference in Climatology, Rates, and Extremes. J. Hydrol. 2021, 594, 125975. [Google Scholar] [CrossRef]
Code | Rain Gauge | Latitude | Longitude | Elevation (m.a.s.l.) | Missing Data (%) | ||||
---|---|---|---|---|---|---|---|---|---|
(GRD) | (min) | (s) | (GRD) | (min) | (s) | ||||
0 | Llano Blanco | 23 | 00 | 00 | 102 | 39 | 36 | 2150 | 0.96 |
1 | Fresnillo | 23 | 10 | 12 | 102 | 54 | 00 | 2201 | 0.96 |
2 | Gobernador Leobardo Reynoso | 23 | 10 | 48 | 103 | 12 | 36 | 2101 | 0.00 |
3 | Santa Rosa | 22 | 55 | 12 | 103 | 06 | 36 | 2240 | 0.00 |
4 | Genaro Codina | 22 | 29 | 24 | 102 | 27 | 36 | 2176 | 4.23 |
5 | El Saladillo | 22 | 40 | 12 | 102 | 02 | 24 | 2034 | 0.00 |
6 | Guadalupe | 22 | 45 | 00 | 102 | 30 | 36 | 2262 | 0.00 |
7 | Juan Aldama | 24 | 16 | 48 | 103 | 24 | 00 | 2009 | 2.96 |
8 | Loreto | 22 | 15 | 36 | 101 | 59 | 24 | 2077 | 4.88 |
9 | Luis Moya | 22 | 26 | 24 | 102 | 15 | 00 | 2017 | 0.00 |
10 | Miguel Auza | 24 | 17 | 24 | 103 | 26 | 24 | 1994 | 5.92 |
11 | Presa Santiago | 24 | 17 | 24 | 103 | 30 | 36 | 1990 | 0.00 |
12 | Pino Suárez | 22 | 07 | 12 | 101 | 24 | 00 | 2119 | 0.77 |
13 | El Cazadero | 23 | 41 | 24 | 103 | 05 | 24 | 1928 | 0.00 |
14 | Río Grande | 23 | 49 | 12 | 103 | 01 | 48 | 1902 | 0.00 |
15 | Villa González Ortega | 22 | 31 | 12 | 101 | 55 | 12 | 2154 | 0.00 |
16 | Villa Hidalgo | 22 | 21 | 00 | 101 | 43 | 12 | 2195 | 1.15 |
17 | La Bufa | 22 | 46 | 48 | 102 | 34 | 12 | 2612 | 0.58 |
18 | Zacatecas | 22 | 45 | 36 | 102 | 34 | 48 | 2352 | 7.5 |
Code | Automated Rain Gauge | Latitude | Longitude | Elevation (m.a.s.l.) | Missing Data (%) | ||||
---|---|---|---|---|---|---|---|---|---|
(GRD) | (min) | (s) | (GRD) | (min) | (s) | ||||
0 | Estación Climatológica | 22 | 34 | 48 | 102 | 39 | 00 | 2323 | 27.87 |
1 | NavierStokes | 22 | 37 | 12 | 102 | 41 | 24 | 2464 | 0.03 |
2 | SaintVenant | 22 | 34 | 48 | 102 | 41 | 24 | 2403 | 0.03 |
3 | Vertedor | 22 | 39 | 00 | 102 | 39 | 36 | 2248 | 0.00 |
Rain Gauge | Day | Gi (mm) | Si (mm) | Si-Gi (mm) | Intensity of Rain (WMO) |
---|---|---|---|---|---|
El Cazadero | 2 July 2020 | 53.60 | 16.91 | −36.69 | heavy |
El Saladillo | 18 August 2021 | 77.00 | 22.08 | −54.92 | heavy |
Fresnillo | 4 October 2019 | 61.00 | 9.34 | −51.66 | heavy |
Genaro Codina | 16 September 2021 | 79.50 | 22.07 | −57.43 | heavy |
Gobernador Leobardo Reynoso | 12 July 2021 | 51.90 | 21.82 | −30.08 | heavy |
Guadalupe | 20 June 2021 | 52.30 | 28.52 | −23.78 | heavy |
Juan Aldama | 28 July 2020 | 74.30 | 39.19 | −35.11 | heavy |
Llano Blanco | 6 August 2021 | 76.50 | 12.96 | −63.54 | heavy |
Loreto | 16 September 2021 | 62.80 | 31.87 | −30.93 | heavy |
Pino Suárez | 31 August 2020 | 52.10 | 23.53 | −28.57 | heavy |
Presa Santiago | 20 June 2021 | 54.00 | 17.23 | −36.77 | heavy |
Zacatecas | 3 June 2021 | 57.50 | 22.77 | −34.73 | heavy |
Automated Rain Gauge | Day | Hour | Gi (mm) | Si (mm) | Si-Gi (mm) | Intensity of Rain (AMS) |
---|---|---|---|---|---|---|
Estación Climatológica | 18 August 2021 | 22:30:00 | 15.00 | 3.26 | −11.74 | Heavy |
NavierStokes | 1 September 2021 | 20:30:00 | 27.20 | 1.91 | −25.29 | Heavy |
SaintVenant | 22 June 2021 | 19:00:00 | 25.60 | 3.23 | −22.37 | Heavy |
Vertedor | 2 June 2021 | 19:30:00 | 23.30 | 0.81 | −22.49 | Heavy |
Temporal Resolution | Type of Rain Gauge | r | Bias | ME | MAE | RMSE | POD | FAR | CSI | VHI | VFAR | VCSI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Half-hourly | Automated rain gauges | 0.23 | 0.13 | 0.01 | 0.10 | 0.52 | 0.60 | 0.72 | 0.24 | 0.51 | 0.66 | 0.25 |
Daily | Rain gauges | 0.64 | 0.05 | 0.12 | 2.04 | 5.21 | 0.93 | 0.46 | 0.52 | 0.98 | 0.19 | 0.79 |
Automated rain gauges | 0.68 | 0.11 | 0.33 | 2.37 | 4.73 | 0.83 | 0.26 | 0.65 | 0.91 | 0.08 | 0.92 | |
Monthly | Rain gauges | 0.85 | 0.07 | 4.47 | 21.25 | 29.87 | 1.00 | 0.06 | 0.94 | 1.00 | 0.00 | 1.00 |
Automated rain gauges | 0.83 | 0.10 | 10.41 | 23.77 | 27.83 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | |
Seasonal | Rain gauges | 0.82 | 0.06 | 24.10 | 57.09 | 76.91 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
Elevation Range (m.a.s.l.) | Temporal Resolution | r | Bias | ME | MAE | RMSE | POD | FAR | CSI | VHI | VFAR | VCSI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1902–2101 | Daily | 0.67 | 0.01 | 0.01 | 1.95 | 4.99 | 0.93 | 0.45 | 0.52 | 0.97 | 0.17 | 0.82 |
Monthly | 0.89 | 0.02 | 1.30 | 19.44 | 27.50 | 1.00 | 0.06 | 0.94 | 1.00 | 0.00 | 1.00 | |
Seasonal | 0.83 | 0.02 | 7.44 | 58.17 | 77.69 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | |
2119–2323 | Daily | 0.60 | 0.12 | 0.26 | 2.19 | 5.51 | 0.92 | 0.46 | 0.51 | 0.97 | 0.20 | 0.78 |
Monthly | 0.84 | 0.11 | 7.38 | 23.04 | 31.29 | 1.00 | 0.07 | 0.93 | 1.00 | 0.00 | 1.00 | |
Seasonal | 0.81 | 0.10 | 38.17 | 57.78 | 77.98 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | |
2352–2612 | Daily | 0.68 | 0.10 | 0.26 | 2.29 | 5.13 | 0.91 | 0.39 | 0.58 | 0.97 | 0.12 | 0.86 |
Monthly | 0.88 | 0.09 | 6.87 | 21.94 | 27.95 | 1.00 | 0.10 | 0.90 | 1.00 | 0.00 | 1.00 | |
Seasonal | 0.84 | 0.12 | 43.96 | 48.60 | 78.04 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
Gauge Density (Gauges/Pixel) | Type of Rain Gauge | r | Bias | ME | MAE | RMSE | POD | FAR | CSI | VHI | VFAR | VCSI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Rain gauges | 0.63 | 0.05 | 0.11 | 2.05 | 5.26 | 0.93 | 0.47 | 0.51 | 0.98 | 0.20 | 0.78 |
Automated rain gauges | 0.42 | 0.00 | 0.00 | 2.20 | 4.80 | 0.74 | 0.34 | 0.54 | 0.74 | 0.13 | 0.87 | |
2 | Automated rain gauges | 0.74 | 0.16 | 0.52 | 2.46 | 4.69 | 0.88 | 0.22 | 0.70 | 0.97 | 0.06 | 0.94 |
3 | Rain gauges | 0.74 | 0.12 | 0.28 | 1.92 | 4.31 | 0.89 | 0.32 | 0.63 | 0.98 | 0.07 | 0.92 |
Type of Rain Gauge (Distance to Centroid) | Type of Rain Gauge | r | Bias | ME | MAE | RMSE | POD | FAR | CSI | VHI | VFAR | VCSI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Centric | Rain gauges | 0.69 | 0.14 | 0.28 | 1.85 | 4.67 | 0.93 | 0.48 | 0.50 | 0.97 | 0.18 | 0.80 |
Automated rain gauges | 0.62 | 0.30 | 0.78 | 2.61 | 5.28 | 0.83 | 0.33 | 0.58 | 0.91 | 0.11 | 0.89 | |
Peripheral | Rain gauges | 0.62 | 0.03 | 0.08 | 2.13 | 5.43 | 0.93 | 0.46 | 0.52 | 0.98 | 0.19 | 0.80 |
Automated rain gauges | 0.66 | 0.04 | 0.14 | 2.80 | 5.64 | 0.90 | 0.31 | 0.64 | 0.95 | 0.08 | 0.92 |
Climate | r | Bias | ME | MAE | RMSE | POD | FAR | CSI | VHI | VFAR | VCSI |
---|---|---|---|---|---|---|---|---|---|---|---|
BS1kw | 0.63 | 0.09 | 0.19 | 2.10 | 5.41 | 0.93 | 0.47 | 0.51 | 0.98 | 0.19 | 0.79 |
BS1kw (w) | 0.67 | −0.02 | −0.05 | 2.20 | 5.25 | 0.95 | 0.40 | 0.58 | 0.98 | 0.13 | 0.85 |
BS0kw | 0.67 | 0.06 | 0.11 | 1.74 | 4.48 | 0.91 | 0.50 | 0.48 | 0.97 | 0.22 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz de la Torre, E.; González Trinidad, J.; González Ramírez, E.; Bautista Capetillo, C.F.; Júnez Ferreira, H.E.; Badillo Almaraz, H.; Rivas Recendez, M.I. Estimation of Rainfall via IMERG-FR and Its Relationship with the Records of a Rain Gauge Network with Spatio-Temporal Variation, Case of Study: Mexican Semi-Arid Region. Remote Sens. 2024, 16, 273. https://doi.org/10.3390/rs16020273
Muñoz de la Torre E, González Trinidad J, González Ramírez E, Bautista Capetillo CF, Júnez Ferreira HE, Badillo Almaraz H, Rivas Recendez MI. Estimation of Rainfall via IMERG-FR and Its Relationship with the Records of a Rain Gauge Network with Spatio-Temporal Variation, Case of Study: Mexican Semi-Arid Region. Remote Sensing. 2024; 16(2):273. https://doi.org/10.3390/rs16020273
Chicago/Turabian StyleMuñoz de la Torre, Eric, Julián González Trinidad, Efrén González Ramírez, Carlos Francisco Bautista Capetillo, Hugo Enrique Júnez Ferreira, Hiram Badillo Almaraz, and Maria Ines Rivas Recendez. 2024. "Estimation of Rainfall via IMERG-FR and Its Relationship with the Records of a Rain Gauge Network with Spatio-Temporal Variation, Case of Study: Mexican Semi-Arid Region" Remote Sensing 16, no. 2: 273. https://doi.org/10.3390/rs16020273
APA StyleMuñoz de la Torre, E., González Trinidad, J., González Ramírez, E., Bautista Capetillo, C. F., Júnez Ferreira, H. E., Badillo Almaraz, H., & Rivas Recendez, M. I. (2024). Estimation of Rainfall via IMERG-FR and Its Relationship with the Records of a Rain Gauge Network with Spatio-Temporal Variation, Case of Study: Mexican Semi-Arid Region. Remote Sensing, 16(2), 273. https://doi.org/10.3390/rs16020273