The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023
Abstract
:1. Introduction
2. Results
2.1. Large-Scale Travelling Ionospheric Disturbances
2.2. E-Region EEJ and F-Region IRC Perturbations
3. Potential Physical Mechanisms
3.1. Drivers for E-Region EEJ
3.1.1. Roles of the Ionospheric Conductivity
3.1.2. Roles of the Neutral Winds
3.2. Drivers for F-Region IRC
3.2.1. Local Drivers
3.2.2. Roles of the Low-Latitude Winds
4. Conclusions
- Two remarkable LSTIDs are found in the dayside ionospheric electron density, with phase speeds of 508 and 309 m/s, respectively, probably associated with the second earthquakes.
- The equatorial E-region EEJ is disturbed by neutral winds (major effects from zonal winds and minor effects from meridional winds), with ignorable roles from ionospheric conductivity.
- The equatorial F-region IRC perturbations are attributed to three processes. One is that the acoustic waves traveling to the low latitudes might modulate the local E-region winds and then generate a meridional electric field that maps to the dip equator. The second is that the local winds from atmospheric resonance prevent the formation of ∆IRC. The last is that the ionospheric polarization electric field reduces the wave shape of ∆IRC during an earthquake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aa, E.; Zhang, S.R.; Wang, W.; Erickson, P.J.; Qian, L.; Eastes, R.; Spicher, A. Pronounced Suppression and X-Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030527. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.J.; Johnson, C.G. Lightning-induced intensification of the ionospheric sporadic E layer. Nature 2005, 435, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Gurram, P.; Kakad, B.; Ravi Kumar, M.; Bhattacharyya, A. Earthquake/Tsunami-Linked Imprints in the Equatorial F Region Zonal Plasma Drifts and Spatial Structures of Plasma Bubbles. J. Geophys. Res. Space Phys. 2019, 124, 504–520. [Google Scholar] [CrossRef]
- Rolland, L.M.; Lognonné, P.; Munekane, H. Detection and modeling of Rayleigh wave induced patterns in the ionosphere. J. Geophys. Res. Space Phys. 2011, 116, A05320. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Nishioka, M.; Maruyama, T.; Kato, H.; Murata, K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 875–879. [Google Scholar] [CrossRef]
- Wang, H.; Xia, H.; Zhang, K. Variations in the Equatorial Ionospheric F Region Current during the 2022 Tonga Volcanic Eruption. Remote Sens. 2022, 14, 6241. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Zhong, Y.; Xia, H.; Qian, C. The Temporal Evolution of F-Region Equatorial Ionization Anomaly Owing to the 2022 Tonga Volcanic Eruption. Remote Sens. 2022, 14, 5714. [Google Scholar] [CrossRef]
- Zhang, S.R.; Vierinen, J.; Aa, E.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; Spicher, A. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front. Astron. Space Sci. 2022, 9, 871275. [Google Scholar] [CrossRef]
- da Silva, C.L.; Salazar, S.D.; Brum, C.G.; Terra, P. Survey of electron density changes in the daytime ionosphere over the Arecibo observatory due to lightning and solar flares. Sci. Rep. 2021, 11, 10250. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Qian, L.; Lotko, W.; Burns, A.G.; Pham, K.; Wilder, F. Solar flare effects in the Earth’s magnetosphere. Nat. Phys. 2021, 17, 807–812. [Google Scholar] [CrossRef]
- Lühr, H.; Marker, S. High-latitude thermospheric density and wind dependence on solar and magnetic activity. In Climate and Weather of the Sun-Earth System (CAWSES); Highlights from a Priority Program; Springer: Dordrecht, The Netherlands, 2013; pp. 189–205. [Google Scholar]
- Maute, A.; Richmond, A.D.; Lu, G.; Knipp, D.J.; Shi, Y.; Anderson, B. Magnetosphere-ionosphere coupling via prescribed field-aligned current simulated by the TIEGCM. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028665. [Google Scholar] [CrossRef]
- Shinbori, A.; Otsuka, Y.; Sori, T.; Tsugawa, T.; Nishioka, M. Temporal and spatial variations of total electron content enhancements during a geomagnetic storm on 27 and 28 September 2017. J. Geophys. Res. Space Phys. 2020, 125, e2019JA026873. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Liu, J.; Zheng, Z.; He, Y.; Gao, J.; Sun, L.; Zhong, Y. Dynamics of the tongue of ionizations during the geomagnetic storm on 7 September 2015. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029038. [Google Scholar] [CrossRef]
- Zhang, K.; Song, H.; Wang, H.; Liu, J.; Wang, W.; Wan, X.; Jin, Y. Dynamics of the tongue of ionizations during the geomagnetic storm on 7 September 2015: The altitudinal dependences. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031735. [Google Scholar] [CrossRef]
- Huba, J.D.; Drob, D. SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system, Geophys. Res. Lett. 2017, 44, 5928–5935. [Google Scholar] [CrossRef]
- Wang, W.; Dang, T.; Lei, J.; Zhang, S.; Zhang, B.; Burns, A. Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. 2019, 124, 2978–2991. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H. The great reduction of equatorial electrojet during the solar eclipse on 14 December 2020. Space Weather 2022, 20, e2022SW003295. [Google Scholar] [CrossRef]
- Colonna, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Tramutoli, V. Optimal Setting of Earthquake-Related Ionospheric TEC (Total Electron Content) Anomalies Detection Methods: Long-Term Validation over the Italian Region. Geosciences 2023, 13, 150. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wu, W.; Chen, C.; Wang, M.; Yang, M.; Guo, Y.; Wang, J. The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm. Atmosphere 2022, 13, 1745. [Google Scholar] [CrossRef]
- López-Urias, C.; Vazquez-Becerra, G.E.; Nayak, K.; López-Montes, R. Analysis of Ionospheric Disturbances during X-Class Solar Flares (2021–2022) Using GNSS Data and Wavelet Analysis. Remote Sens. 2023, 15, 4626. [Google Scholar] [CrossRef]
- Grodji, O.D.F.; Doumbia, V.; Amaechi, P.O.; Amory-Mazaudier, C.; N’guessan, K.; Diaby, K.A.A.; Zie, T.; Boka, K. A Study of Solar Flare Effects on the Geomagnetic Field Components during Solar Cycles 23 and 24. Atmosphere 2022, 13, 69. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Forbes, J.M.; Lu, G.; Bruinsma, S.; Nerem, S.; Zhang, X. Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res. 2005, 110, A12S27. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Nakamura, T.; Zhao, B.; Ning, B.; Yoshikawa, A. A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm. J. Geophys. Res. Space Phys. 2014, 119, 7716–7731. [Google Scholar] [CrossRef]
- Thome, G.D. Incoherent scatter observations of traveling ionospheric disturbances. J. Geophys. Res. 1964, 69, 4047–4049. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, J.; Wang, W.; Wang, H. The effects of IMF Bz periodic oscillations on thermospheric meridional winds. J. Geophys. Res. Space Phys. 2019, 124, 5800–5815. [Google Scholar] [CrossRef]
- Shao, X.M.; Lay, E.H.; Jacobson, A.R. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat. Geosci. 2013, 6, 29–33. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D.; Pulinets, M. Atmosphere-ionosphere coupling induced by volcanoes eruption and dust storms and role of GEC as the agent of geospheres interaction. Adv. Space Res. 2022, 69, 4319–4334. [Google Scholar] [CrossRef]
- Currie, J.; Waters, C. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J. Geophys. Res. Space Phys. 2014, 119, 992–1003. [Google Scholar] [CrossRef]
- Ma, J.Z. Atmospheric layers in response to the propagation of gravity waves under nonisothermal, wind-shear, and dissipative conditions. J. Mar. Sci. Eng. 2016, 4, 25. [Google Scholar] [CrossRef]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer Science Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Guo, Q.; Chernogor, L.F.; Garmash, K.P.; Rozumenko, V.T.; Zheng, Y. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. 2019, 186, 88–103. [Google Scholar] [CrossRef]
- Pulinets, S. Physical mechanism of the vertical electric field generation over active tectonic faults. Adv. Space Res. 2009, 44, 767–773. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P.; Karelin, A.; Žalohar, J. Thermodynamic instability of the atmospheric boundary layer stimulated by tectonic and seismic activity. J. Atmos. Sol.-Terr. Phys. 2023, 246, 106050. [Google Scholar] [CrossRef]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; Zavala, J.L.C.; Urias, C.L.; Soto, M.E.T.; Aggarwal, S.P. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw, Mexico. Acta Geod. Geophys. 2023, 58, 515–538. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Zhang, S.; Dai, R. Analysis of potential precursory pattern at Earth surface and the above atmosphere and ionosphere preceding two Mw ≥ 7 earthquakes in Mexico in 2020–2021. Earth Space Sci. 2022, 9, e2022EA002267. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Zhao, S.; Liu, J.; Zhang, X.; Huang, J.; Zhao, Z. An electric field penetration model for seismo-ionospheric research. Adv. Space Res. 2017, 60, 2217–2232. [Google Scholar] [CrossRef]
- Heki, K.; Ping, J. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth Planet. Sci. Lett. 2005, 236, 845–855. [Google Scholar] [CrossRef]
- Wang, W.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.Y.; Lei, J.; Xu, J. Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. Space Phys. 2012, 117, 1864. [Google Scholar] [CrossRef]
- Maletckii, B.; Astafyeva, E.; Sanchez, S.A.; Kherani, E.A.; de Paula, E.R. The 6 February 2023 Türkiye earthquake sequence as detected in the ionosphere. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031663. [Google Scholar] [CrossRef]
- Richmond, A.D. Gravity wave generation, propagation, and dissipation in the thermosphere. J. Geophys. Res. 1978, 83, 4131–4145. [Google Scholar] [CrossRef]
- Lühr, H.; Rother, M.; Häusler, K.; Alken, P.; Maus, S. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 2008, 113, A08313. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground based observations of earthquake precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; McGill, P.R.; Bernardi, A. Comment on “Natural Magnetic Disturbance fields, Not Precursors, Preceding the Loma Prieta Earthquake” by Wallace H. Campbell. J. Geophys. Res. Space Phys. 2011, 116, A08. [Google Scholar] [CrossRef]
- Lühr, H.; Park, J.; Gjerloev, J.W.; Rauberg, J.; Michaelis, I.; Merayo, J.M.; Brauer, P. Field-aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 2015, 42, 1–8. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Harding, B.J.; Stolle, C.; Matzka, J. Neutral wind profiles during periods of eastward and westward equatorial electrojet. Geophys. Res. Lett. 2021, 48, e2021GL093567. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Nishimura, Y.; Vierinen, J.; Lyons, L.R.; Knipp, D.J.; Gustavsson, B.J.; Waghule, B.V.; Erickson, P.J.; Coster, A.J.; Aa, E.; et al. Simultaneous Global Ionospheric Disturbances Associated with Penetration Electric Fields During Intense and Minor Solar and Geomagnetic Disturbances. Geophys. Res. Lett. 2023, 50, e2023GL104250. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Maute, A. Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. 2017, 206, 299–405. [Google Scholar] [CrossRef]
- Park, J.; Lühr, H. Effects of sudden stratospheric warming (SSW) on the lunitidal modulation of the F-region dynamo. J. Geophys. Res. Space Phys. 2012, 117, A09320. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Harding, B.J.; Wu, Y.-J.J.; Alken, P.; Yamazaki, Y.; Triplett, C.C.; Immel, T.J.; Gasque, L.C.; Mende, S.B.; Xiong, C. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophys. Res. Lett. 2022, 49, e2022GL098577. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, H.; Xia, H.; Wang, W.; Liu, J.; Zhang, S.; Jin, Y. The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023. Remote Sens. 2024, 16, 272. https://doi.org/10.3390/rs16020272
Zhang K, Wang H, Xia H, Wang W, Liu J, Zhang S, Jin Y. The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023. Remote Sensing. 2024; 16(2):272. https://doi.org/10.3390/rs16020272
Chicago/Turabian StyleZhang, Kedeng, Hui Wang, Hao Xia, Wenbin Wang, Jing Liu, Shunrong Zhang, and Yaqi Jin. 2024. "The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023" Remote Sensing 16, no. 2: 272. https://doi.org/10.3390/rs16020272
APA StyleZhang, K., Wang, H., Xia, H., Wang, W., Liu, J., Zhang, S., & Jin, Y. (2024). The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023. Remote Sensing, 16(2), 272. https://doi.org/10.3390/rs16020272