The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate
Abstract
:1. Introduction
“A friend recently told me her son had bought a water-front lot, but was worried about building a cabin on it. He had heard alarming news about future sea level rise. She asked for my advice. All I could say was that the only way of knowing the future for certain is to wait and see, but in this case, we can be fairly sure of what the immediate future holds. I suggested her son go ahead and build his cabin, and enjoy the coast (his lot is on Hornby Island, British Columbia, along the magnificent Pacific coast of Canada), but to be prepared for a global rise of almost half-a-metre in the first half of this century, and a full metre rise, or even more, by 2100. Hornby Island is far from flat, and unless he has bought a coastal marsh, he should be able to handle this. For other parts of the world, the danger is much more immediate, and will have vastly greater impact”.
2. Single Exponential Event Model
2.1. The Keeling Curve
2.2. Global Average Sea Surface Temperature
2.3. Global Average Sea Level
3. Satellite Altimetry Data Record
3.1. Relative Sea Level
3.2. Geocentric Sea Level
3.3. Satellite Altimeter Missions
4. Coastal Areas: Impacts and Defenses
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The Pillars of Hercules: Damming the Strait of Gibraltar
Appendix B
- Saving the City of Venice
References
- Barale, V.; Gower, J.F.R.; Alberotanza, L. (Eds.) Proceedings of the “Oceans from Space” V, Venice 2022; NSA GROUP: Rome, Italy, 2022; p. 252. [Google Scholar] [CrossRef]
- Robinson, I.S. Measuring the Oceans from Space. The Principles and Methods of Satellite Oceanography; Springer-Praxis Books in Geophysical Sciences; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Benveniste, J.; Bonnefond, P. 25 Years of Progress in Radar Altimetry. Adv. Space Res. 2021, 68, 317–1242. [Google Scholar] [CrossRef]
- Zhou, D. Marginal Seas. In Encyclopedia of Marine Geosciences; Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- The Mobile Barriers for the Protection of Venice from High Tides. Available online: https://www.mosevenezia.eu/project/?lang=en (accessed on 17 May 2023).
- Von Schuckmann, K.; Le Traon, P.Y.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.P.; Grégoire, M. Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oceanogr. 2021, 14 (Suppl. S1), s1–s185. [Google Scholar] [CrossRef]
- Gramling, C. The ‘Doomsday’ Glacier May Soon Trigger a Dramatic Sea-Level Rise. Available online: https://www.snexplores.org/article/antarctica-thwaites-glacier-ice-shelf-collapse-climate-5-years (accessed on 2 April 2023).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295–2327. [Google Scholar] [CrossRef]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- Pulhin, J.M.; Inoue, M.; Shaw, R. (Eds.) Climate Change, Disaster Risks, and Human Security; Book Series on Disaster Risk Reduction; Springer: Singapore, 2022; 450p. [Google Scholar]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, cryosphere, and sea level change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Callendar, G.S.; Stewart, G. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 1938, 64, 223–240. [Google Scholar] [CrossRef]
- Ritchie, H.; Rodés-Guirao, L.; Mathieu, E.; Gerber, M.; Ortiz-Ospina, E.; Hasell, J.; Roser, M. Population Growth; Our World in Data: Oxford, UK, 2023; Available online: https://ourworldindata.org/population-growth (accessed on 18 August 2023).
- Keeling, R.F. Recording Earth’s Vital Signs. Science 2008, 319, 1771–1772. [Google Scholar] [CrossRef] [PubMed]
- United Nations Climate Change. Available online: https://unfccc.int (accessed on 14 August 2023).
- Barcena, A. An Overview of the Oceans in Agenda 21 of the 1992 United Nations Conference on Environment and Development. Mar. Pollut. Bull. 1992, 25, 107–111. [Google Scholar] [CrossRef]
- Breidenich, C.; Magraw, D.; Anne Rowley, A.; Rubin, J.W. The Kyoto Protocol to the United Nations Framework Convention on Climate Change. Am. J. Int. Law 1998, 92, 315–331. [Google Scholar] [CrossRef]
- Mayer, B. The Curious Fate of the Doha Amendment. Available online: https://www.ejiltalk.org/the-curious-fate-of-the-doha-amendment/ (accessed on 1 September 2023).
- Schneider, L.; La Hoz Theuer, S. Environmental integrity of international carbon market mechanisms under the Paris Agreement. Clim. Policy 2019, 19, 386–400. [Google Scholar] [CrossRef]
- Sharm El-Sheikh Climate Change Conference 2022. Available online: https://unfccc.int/cop27 (accessed on 17 May 2023).
- NOAA. Global Monitoring Laboratory, Earth System Research Laboratories. Trends in Atmospheric Carbon Dioxide. Available online: https://gml.noaa.gov/ccgg/trends/data.html (accessed on 17 August 2023).
- Thoning, K.W.; Crotwell, A.M.; Mund, J.W. Atmospheric Carbon Dioxide Dry Air Mole Fractions from continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole. 1973–2022 Version 2023-08-08 National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory (GML), Boulder, Colorado, USA. Available online: https://doi.org/10.15138/yaf1-bk21 (accessed on 11 August 2023).
- Gillespie, A. University of Hawaii, NOAA to Gather Climate Change Data Following Mauna Loa Eruption. Available online: https://www.noaa.gov/news-release/university-of-hawaii-noaa-to-gather-climate-change-data-following-mauna-loa-eruption (accessed on 17 August 2023).
- NOAA. Climate.gov. Carbon Dioxide over 800,000 Years. Available online: https://www.climate.gov/ (accessed on 4 September 2023).
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef]
- Met Office Hadley Centre Observations Datasets. Available online: https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html (accessed on 17 August 2023).
- Kennedy, J.J.; Rayner, N.A.; Atkinson, C.P.; Killick, R.E. An ensemble data set of sea surface temperature change from 1850: The Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophyical. Res. Atmos. 2019, 124, 7719–7763. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023, Synthesis Report, Summary for Policimakers. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 17 May 2023).
- Copernicus. OBSERVER: Record-Breaking Marine Heatwaves in the Mediterranean and Safeguarding Marine Ecosystems. Available online: https://www.copernicus.eu/en/news/news/observer-record-breaking-marine-heatwaves-mediterranean-and-safeguarding-marine (accessed on 1 September 2023).
- Way, M.J.; Del Genio, A.D.; Aleinov, I.; Clune, T.L.; Kelley, M.; Kiang, N.Y. Climates of Warm Earth-like Planets. I. 3D Model Simulations. Astrophys. J. Suppl. Ser. 2018, 239, 24. [Google Scholar] [CrossRef]
- Guerou, A.; Meyssignac, B.; Prandi, P.; Ablain, M.; Ribes, A.; Bignalet-Cazalet, F. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated uncertainty. Ocean. Sci. 2023, 19, 431–451. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Sierra, J.P. Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef]
- Copernicus. Climate Indicators. Sea Level. Available online: https://climate.copernicus.eu/climate-indicators/sea-level (accessed on 5 September 2023).
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- CSIRO. Sea Level Rise. Available online: https://www.cmar.csiro.au/sealevel/sl_data_cmar.html (accessed on 17 August 2023).
- CNES. AVISO+, Satellite Altimetry Data. Data Access. Available online: https://www.aviso.altimetry.fr/en/data/data-access.html (accessed on 17 August 2023).
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Cazenave, A.; Moreira, L. Contemporary sea-level changes from global to local scales: A review. Proc. R. Soc. A 2022, 478, 20220049. [Google Scholar] [CrossRef]
- NASA Earth Data. Sea Level Change. Observations from Space. Understanding Sea Level. Global Mean Sea Level. Available online: https://sealevel.nasa.gov/understanding-sea-level/global-sea-level/overview (accessed on 27 September 2023).
- Pokhrel, Y.N.; Hanasaki, N.; Yeh, P.J.; Yamada, T.J.; Kanae, S.; Oki, T. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 2012, 5, 389–392. [Google Scholar] [CrossRef]
- Moucha, R.; Forte, A.M.; Mitrovica, J.X.; Rowley, D.B.; Quéré, S.; Simmons, N.A.; Grand, S.P. Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 2008, 271, 101–108. [Google Scholar] [CrossRef]
- Kopp, R.E.; Hay, C.C.; Little, C.M.; Mitrovica, J.X. Geographic Variability of Sea-Level Change. Curr. Clim. Change Rep. 2015, 1, 192–204. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Pugh, D.T.; Plater, A.J. Sea level measurements from tide gauges. In Handbook of Sea-Level Research, 1st ed.; Shennan, I., Long, A.J., Horton, B.P., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2015; pp. 557–574. [Google Scholar]
- Boretti, A. Nonlinear absolute sea-level patterns in the long-term-trend tide gauges of the East Coast of North America. Nonlinear Eng. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Gobron, K.; de Viron, O.; Wöppelmann, G.; Poirier, É.; Ballu, V.; Van Camp, M. Assessment of Tide Gauge Biases and Precision by the Combination of Multiple Collocated Time Series. J. Atmos. Ocean. Technol. 2019, 36, 1983–1996. [Google Scholar] [CrossRef]
- Mitchum, G.T. Monitoring the Stability of Satellite Altimeters with Tide Gauges. J. Atmos. Ocean. Technol. 1998, 15, 721–730. [Google Scholar] [CrossRef]
- Mu, D.; Yan, H.; Feng, W. Assessment of sea level variability derived by EOF reconstruction. Geophys. J. Int. 2018, 214, 79–87. [Google Scholar] [CrossRef]
- Fu, L.L.; Cazenave, A. (Eds.) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; International Geophysics Series; Academic Press: San Diego, CA, USA, 2001; Volume 69, 463p. [Google Scholar]
- Nerem, R.S.; Mitchum, G.T. Chapter 6 Observation of sea level change from satellite altimetry. In Sea Level Rise: History and Consequences; Douglas, B.C., Kearney, M.S., Leatherman, S.P., Eds.; International Geophysics Series; Academic Press: San Diego, CA, USA, 2001; Volume 75, pp. 21–163. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.L.; Picot, N.; Raynal, M.; Roinard, H. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Watson, C.; White, N.; Church, J.; King, M.A.; Butgette, R.J.; Legresy, B. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 2015, 5, 565–568. [Google Scholar] [CrossRef]
- Apel, J.R. Three Decades of Satellite Oceanography: The View from on High. In Space Remote Sensing of Subtropical Oceans, Proceedings of the COSPAR Colloquium on Space Remote Sensing of Subtropical Oceans (SRSSO), Taiwan, 12–17 September 1995; Liu, C.T., Ed.; COSPAR Colloquia Series; Pergamon: Oxford, UK, 1997; Volume 8, pp. 11–19. [Google Scholar] [CrossRef]
- Born, G.H.; Dunne, J.A.; Lame, D.B. Seasat Mission Overview. Science 1979, 204, 1405–1406. [Google Scholar] [CrossRef]
- Wilson, W.S.; Fellous, J.L.; Kawamura, H.; Mitnik, L.M. A History of Oceanography from Space. In Remote Sensing of the Marine Environment; Ryerson, R.A., Ed.; Manual of Remote Sensing; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2006; Volume 6, pp. 1–31. [Google Scholar]
- ESA, Earth Online, ENVISAT. Available online: https://earth.esa.int/eogateway/missions/envisat (accessed on 25 May 2023).
- Steunou, N.; Desjonquères, J.D.; Picot, N.; Sengenes, P.; Noubel, J.; Poisson, J.C. AltiKa Altimeter: Instrument Description and In-Flight Performance. Mar. Geod. 2015, 38 (Suppl. S1), 22–42. [Google Scholar] [CrossRef]
- ESA, Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions (accessed on 4 September 2023).
- ESA, Earth Online, CryoSat. Available online: https://earth.esa.int/eogateway/missions/cryosat (accessed on 4 September 2023).
- Fu, L.L.; Alsdorf, D.; Rodriguez, E.; Morrow, R.; Mognard, N.; Lambin, J.; Vaze, P.; Lafon, T. The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications. In Proceedings of the OceanObs’09, Venice, Italy, 21–25 September 2009. [Google Scholar]
- JPL, PODAAC, MEaSUREs—Integrated Multi-Mission Ocean Altimeter Data for Climate Research (MEaSUREs-SHH). Available online: https://podaac.jpl.nasa.gov/MEaSUREs-SSH (accessed on 30 August 2023).
- Lindsey, R. Climate Change: Global Sea Level. NOAA Science & Information for a Climate-Smart Nation. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 25 May 2023).
- University of Colorado, Sea Level Research Group. Available online: https://sealevel.colorado.edu/ (accessed on 25 May 2023).
- CNES. AVISO+, Satellite Altimetry Data. Mean Sea Level. Available online: https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level.html (accessed on 25 May 2023).
- Thiéblemont, R.; Le Cozannet, G.; Toimil, A.; Meyssignac, B.; Losada, I.J. Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario. Water 2019, 11, 2607. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef]
- Wikipedia. Atlantropa. Available online: https://en.wikipedia.org/wiki/Atlantropa (accessed on 6 September 2023).
- Stommel, H. The circulation of the abyss. Sci. Am. 1958, 199, 85–90. Available online: https://sciam-cms.s3.amazonaws.com/sciam/cache/file/C39DA9C7-9B4C-4975-839909C607633730.pdf (accessed on 5 September 2023). [CrossRef]
- Johnson, R.G. Climate control requires a dam in the Strait of Gibraltar. Eos Trans. Am. Geophys. Union 1997, 78, 277–282. [Google Scholar] [CrossRef]
- Gower, J. A sea surface height control dam at the Strait of Gibraltar. Nat. Hazards 2015, 78, 2109–2120. [Google Scholar] [CrossRef]
- Gradstein, F.M.; Ogg, J.G.; Smith, A.G. (Eds.) A Geologic Time Scale 2004; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; p. 589. [Google Scholar]
- Ruggieri, G.; Sprovieri, R. Messinian salinity crisis and its paleogeographical implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1976, 20, 13–21. [Google Scholar] [CrossRef]
- Hsü, K.J. The Mediterranean Was a Desert; Princeton University Press: Princeton, NJ, USA, 1983; p. 197. [Google Scholar]
- Caruso, A.; Blanc-Valleron, M.M.; Da Prato, S.; Pierre, C.; Rouchy, J.M. The late Messinian “Lago-Mare” event and the Zanclean Reflooding in the Mediterranean Sea: New insights from the Cuevas del Almanzora section (Vera Basin, South-Eastern Spain). Earth-Sci. Rev. 2020, 200, 102993. [Google Scholar] [CrossRef]
- Carlisle, D.P.; Feetham, P.M.; Wright, M.J.; Teagle, D.A.H. The public remain uninformed and wary of climate engineering. Clim. Change 2020, 160, 303–322. [Google Scholar] [CrossRef]
- Kitchen, D. Geoengineering Sounds Like a Quick Climate Fix, But without More Research and Guardrails, It’s a Costly Gamble—With Potentially Harmful Results. Available online: https://theconversation.com/geoengineering-sounds-like-a-quick-climate-fix-but-without-more-research-and-guardrails-its-a-costly-gamble-with-potentially-harmful-results-211705 (accessed on 7 September 2023).
- Wagner, G. Geoengineering: The Gamble; Polity Press: Cambridge, UK; Oxford, UK; Boston, MA, USA; New York, NY, USA, 2021; p. 208. [Google Scholar]
- Marcos, M.; Jorda, G.; Le Cozannet, G. Sea level rise and its impacts on the Mediterranean. In The Mediterranean Region under Climate Change: A Scientific Update; Moatti, J.P., Thiébault, S., Eds.; IRD Éditions: Marseille, France, 2016; pp. 265–275. [Google Scholar]
- Groeskamp, S.; Kjellsson, J. NEED: The Northern European Enclosure Dam for if Climate Change Mitigation Fails. Bull. Am. Meteorol. Soc. 2020, 101, E1174–E1189. [Google Scholar] [CrossRef]
- Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Oceans 2005, 110, C09S05. [Google Scholar] [CrossRef]
- INDEPENDENT. Climate. News. COP21: Paris Deal Far too Weak to Prevent Devastating Climate Change, Academics Warn, by T. Bawden. Available online: https://www.independent.co.uk/environment/climate-change/cop21-paris-deal-far-too-weak-to-prevent-devastating-climate-change-academics-warn-a6803096.html (accessed on 11 September 2023).
- Shepherd, J.; Caldeira, K.; Cox, P.; Haigh, J.; Keith, D.; Launder, B.; Mace, G.; MacKerron, G.; Pyle, J.; Rayner, S.; et al. Geoengineering the Climate: Science, Governance, and Uncertainty; Royal Society Policy Document, 10/09; The Royal Society Publishing: London, UK, 2009; p. 82. [Google Scholar]
- Arnell, N.W. The implications of climate change for emergency planning. Int. J. Disaster Risk Reduct. 2022, 83, 103425. [Google Scholar] [CrossRef]
- Moore, J.C.; Gladstone, R.; Zwinger, T.; Wolovick, M. Geoengineer polar glaciers to slow sea-level rise. Nature 2018, 555, 303–305. [Google Scholar] [CrossRef]
- International Altimetry Team; Verron, J.; Ryan, B.; Bonnefond, P.; Benveniste, J. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Nieves, V.; Radin, C.; Camps-Valls, G. Predicting regional coastal sea level changes with machine learning. Nat. Sci. Rep. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Wikipedia. Pillars of Hercules. Available online: https://en.wikipedia.org/wiki/Pillars_of_Hercules (accessed on 8 May 2023).
- Wikipedia. Labours of Hercules. Available online: https://en.wikipedia.org/wiki/Labours_of_Hercules (accessed on 8 May 2023).
- Siculus, D. Library of History, Volume II: Books 2.35-4.58; Oldfather, C.H., Translator; Loeb Classical Library No. 303; Harvard University Press: Cambridge, MA, USA, 1935. [Google Scholar]
- Oceans from Space. Available online: https://www.oceansfromspacevenice2020.org (accessed on 11 September 2023).
- Breeze, P. Chapter 3—Dams and Barrages. In Hydropower; Breeze, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 23–33. [Google Scholar] [CrossRef]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2018); EMODnet High Resolution Seabed Mapping Project: Madeira, Portugal, 2018. [Google Scholar] [CrossRef]
- USGS. Chuquicamata Mine, Chile. Available online: https://eros.usgs.gov/media-gallery/earthshot/chuquicamata-mine-chile (accessed on 11 September 2023).
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 9–3292. [Google Scholar] [CrossRef] [PubMed]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Sociedad Espanola de Estudios Para la Communicion Fija a Traves del Estrecho de Gibraltar (SECEGSA), Agenda 2030. Available online: https://www.secegsa.gob.es/secegsa/lang_castellano/ (accessed on 25 May 2023).
- Ste Nationale d’Etudes du Detroit de Gibraltar (SNEDG). Available online: https://www.charika.ma/societe-ste-nationale-d-etudes-du-detroit-de-gibraltar-17101 (accessed on 25 May 2023).
- Mariotti, A.; Struglia, M.V.; Zeng, N.; Lau, K.M. The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Clim. 2002, 15, 1674–1690. [Google Scholar] [CrossRef]
- Rahmstorf, S. Influence of Mediterranean outflow on climate. Eos Trans. Am. Geophys. Union 1998, 79, 281–282. [Google Scholar] [CrossRef]
- Meinesz, A. Proteger la Biodiversite Marine; Odile Jacob: Nice, France, 2021; 304p. [Google Scholar]
- Galil, B.S. Taking stock: Inventory of alien species in the Mediterranean Sea. Biol. Invasions 2009, 11, 359–372. [Google Scholar] [CrossRef]
- Umgiesser, G. From Global to Regional: Local Sea Level Rise Scenarios, Focus on the Mediterranean Sea and the Adriatic Sea. The Future of Venice and Its Lagoon in the Context of Climate Change; UNESCO Office Venice and Regional Bureau for Science and Culture in Europe: Venice, Italy, 2011; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000215105?posInSet=8&queryId=92c0667e-e72d-4198-bf42-dc33119acd56 (accessed on 17 May 2023).
- Bras, R.L.; Harleman, D.R.F.; Rinaldo, A.; Rizzoli, P. Obsolete? No. Necessary? Yes. The gates will save Venice. EOS Trans. 2002, 83, 217–224. [Google Scholar] [CrossRef]
- Harlan, C.; Pitrelli, S. Venice Submerged by Highest Tides in Half a Century. Washington Post, 13 November 2019. Available online: https://www.washingtonpost.com/world/europe/venice-partly-submerged-by-highest-tides-in-half-a-century/2019/11/13/fa36566e-05fa-11ea-8292-c46ee8cb3dce_story.html (accessed on 16 August 2023).
- Umgiesser, G. The impact of operating the mobile barriers in Venice (MOSE) under climate change. J. Nat. Conserv. 2020, 54, 125783. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Venice Shall Rise Again, 1st ed.; Elsevier Insights: London, UK, 2013; 100p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gower, J.; Barale, V. The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate. Remote Sens. 2024, 16, 262. https://doi.org/10.3390/rs16020262
Gower J, Barale V. The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate. Remote Sensing. 2024; 16(2):262. https://doi.org/10.3390/rs16020262
Chicago/Turabian StyleGower, Jim, and Vittorio Barale. 2024. "The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate" Remote Sensing 16, no. 2: 262. https://doi.org/10.3390/rs16020262
APA StyleGower, J., & Barale, V. (2024). The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate. Remote Sensing, 16(2), 262. https://doi.org/10.3390/rs16020262