Links between Land Cover and In-Water Optical Properties in Four Optically Contrasting Swedish Bays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.1.1. Description of Each Site (Bay)
2.1.2. Selection of Catchments
2.2. Optical Transects
2.2.1. Water Sampling and Measurement Protocols
SPM, SPIM and SPOM Measurements
Turbidity Measurements
CDOM Measurements
Chlorophyll-a Measurements
2.3. Land Use and Land Cover Analysis
- Reprojection of CORINE into the same geographical projection as for the Catchment shapefile EPSG3006 SWEREF99 TM used by the Swedish Meteorological and Hydrological Institute, SMHI, Norrköping, Sweden [23].
- Fixing geometries of CORINE data via the vector operation “fix geometries”.
- Reducing the number of Level 1 attributes from 44 to 10 categories (so called Code 18).
- Aggregating the original 44 to 10 polygons of the same Level 1 class.
- Intersection of the dissolved LULC polygons with the catchment boundaries in order to exclude information outside the areas of interests.
- Eventually, computation of percentage area per category of Level 1.
2.4. Combining Optical and LULC Data
3. Results
3.1. Derived Catchment Areas and Description of Their Hydrology
3.2. Results of the LULC Analysis
3.3. Ranges of Optical Properties in Each Bay
3.4. Investigating the Nature of CDOM Due to LULC
3.5. Investigating the Nature of Particulate Material with LULC
3.6. Investigating the Dependency of the Chl-a Concentration on LULC
4. Discussion
4.1. LULC Classification
4.1.1. Influence of LULC Classification on aCDOM and SCDOM
4.1.2. Influence of LULC Classification on SPM
4.1.3. Influence of LULC Classification on Chl-a
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010; 639p, ISBN 978-0-521-15175-7. [Google Scholar]
- Schnitzer, M. Humic substances: Chemistry and reactions. In Developments in Soil Science; Volume 8: Soil Organic Matter; Schnitzer, M., Khan, S.U., Eds.; Elsevier: Amsterdam, The Netherlands, 1978; pp. 1–64. [Google Scholar]
- Preisendorfer, R.W. Application of radiative transfer theory to light measurement in the sea. Union Geod. Geophys. Inst. Monogr. 1961, 10, 11–30. [Google Scholar]
- Carder, K.L.; Steward, R.G.; Harvey, G.R.; Ortner, P.B. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Ocean. 1989, 34, 68–81. [Google Scholar] [CrossRef]
- Harvey, T.; Allart, S.; Andersson, A. Relationships between Coloured Dissolved Organic Matter (CDOM) and Dissolved Organic Carbon (DOC) in different coastal gradients of the Baltic Sea. AMBIO 2015, 44, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Kowalczuk, P.; Stedmon, C.A.; Markager, S. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. MAR CHEM 2006, 101, 1–11. [Google Scholar] [CrossRef]
- Kratzer, S.; Tett, P. Using bio-optics to investigate the extent of coastal waters: A Swedish case study. Hydrobiologia 2009, 629, 169–186. [Google Scholar] [CrossRef]
- Robinson, I.S. Satellite observations of ocean colour. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1983, 309, 415–432. [Google Scholar] [CrossRef]
- Wild-Allen, K.; Lane, A.; Tett, P. Phytoplankton, sediment and optical observations in Netherlands coastal water in spring. J. Sea Res. 2002, 47, 303–315. [Google Scholar] [CrossRef]
- van de Hulst, H.C.; Twersky, V. Light Scattering by Small Particles; Dover Publications, Inc.: New York, NY, USA, 1981; 470p, ISBN 0-486-64228-3. [Google Scholar]
- Carder, K.L.; Betzer, P.R.; Eggimann, D.W. Physical, chemical, and optical measures of suspended-particle concentrations: Their intercomparison and application to the West African Shelf. In Suspended Solids in Water; Gibbs, R.J., Ed.; Springer: Boston, MA, USA, 1974; pp. 173–181. [Google Scholar] [CrossRef]
- Aas, E. Refractive index of phytoplankton derived from its metabolite composition. J. Plankton Res. 1996, 18, 2223–2249. [Google Scholar] [CrossRef]
- Lide, D.R. Physical and optical properties of minerals. CRC Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 1996; p. 2608. ISBN 10-0849305969. [Google Scholar]
- Boss, E.; Pegau, W.S.; Lee, M.; Twardowski, M.; Shybanov, E.; Korotaev, G.; Baratange, F. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Kratzer, S.; Kyryliuk, D.; Brockmann, C. Inorganic suspended matter as an indicator of terrestrial influence in Baltic Sea coastal areas—Algorithm development and validation, and ecological relevance. Remote Sens. Environ. 2020, 237, 111609. [Google Scholar] [CrossRef]
- Kari, E.; Kratzer, S.; Beltrán-Abaunza, J.M.; Harvey, E.T.; Vaičiūtė, D. Retrieval of suspended particulate matter from turbidity–model development, validation, and application to MERIS data over the Baltic Sea. Int. J. Remote Sens. 2017, 38, 1983–2003. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 M Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Kratzer, S.; Moore, G. Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans. Remote Sens. 2018, 10, 418. [Google Scholar] [CrossRef]
- Le, C.; Lehrter, J.C.; Hu, C.; Schaeffer, B.; MacIntyre, H.; Hagy, J.D.; Beddick, D.L. Relation between inherent optical properties and land use and land cover across Gulf Coast estuaries. Limnol. Ocean. 2015, 60, 920–933. [Google Scholar] [CrossRef]
- HELCOM (Helsinki Commission) Sub-Basins. 2018. Available online: http://metadata.helcom.fi (accessed on 15 August 2022).
- Natural Earth, Free Vector and Raster Map Data. Available online: https://www.naturalearthdata.com (accessed on 11 September 2022).
- European Environment Agency (EEA) European Shapefile. Available online: https://www.eea.europa.eu (accessed on 11 September 2023).
- SMHI (Swedish Meteorological and Hydrological Institute), SVAR (Svenskt VattenARkiv). 2021. Available online: https://www.smhi.se/data/hydrologi/sjoar-och-vattendrag/ladda-ner-data-fran-svenskt-vattenarkiv-1.20127 (accessed on 11 September 2023).
- Wikner, J.; Andersson, A. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Glob. Change Biol. 2012, 18, 2509–2519. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- SMHI, Hydrologiskt Nuläge, Vattenwebb (In English: Current Hydrological Status, Water Web). Available online: https://vattenwebb.smhi.se/hydronu/ (accessed on 11 September 2023).
- Kratzer, S.; Harvey, E.T.; Canuti, E. International Intercomparison of In Situ Chlorophyll-a Measurements for Data Quality Assurance of the Swedish Monitoring Program. Front. Remote Sens. 2022, 3, 866712. [Google Scholar] [CrossRef]
- Strickland, J.H.D.; Parsons, T.R. A Practical Hand-Book of Sea-Water Analysis; Bulletin Journal of the Fisheries Research Board of Canada; Pergamon Press: Oxford, UK, 1972; Volume 167, pp. 185–203. ISBN 0-08-030-288-2. [Google Scholar]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: Oxford, UK, 1984; Volume 173, ISBN 0-08-030288-2. [Google Scholar]
- Sørensen, K.; Grung, M.; Röttgers, R. An intercomparison of in vitro chlorophyll a determinations for MERIS level 2 data validation. Int. J. Remote Sens. 2007, 28, 537–554. [Google Scholar] [CrossRef]
- Cema, G.; Płaza, E.; Trela, J.; Surmacz-Górska, J. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process. Water Sci. Technol. 2011, 64, 1009–1015. [Google Scholar] [CrossRef]
- Franzén, F.; Kinell, G.; Walve, J.; Elmgren, R.; Söderqvist, T. Participatory social-ecological modeling in eutrophication management: The case of Himmerfjärden, Sweden. Ecol. Soc. 2011, 16, 27. [Google Scholar] [CrossRef]
- Gullstrand, M.; Löwgren, M.; Castensson, R. Water issues in comprehensive municipal planning: A review of the Motala River Basin. J. Environ. Manag. 2003, 69, 239–247. [Google Scholar] [CrossRef] [PubMed]
- SLU. Official Statistics of Sweden; Publikationsservice, Uppsala; Swedish University of Agricultural Sciences: Umeå, Sweden, 2017; ISSN 0280-0543. [Google Scholar]
- Laudon, H.; Berggren, M.; Ågren, A.; Buffam, I.; Bishop, K.; Grabs, T.; Jansson, M.; Köhler, S. Patterns and dynamics of Dissolved Organic Carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling. Ecosystems 2011, 14, 880–893. [Google Scholar] [CrossRef]
- Mzobe, P.; Berggren, M.; Pilesjö, P.; Lundin, E.; Olefeldt, D.; Roulet, N.T.; Persson, A. Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach. PLoS ONE 2018, 13, e0199608. [Google Scholar] [CrossRef] [PubMed]
- Ågren, A.; Buffam, I.; Berggren, M.; Bishop, K.; Jansson, M.; Laudon, H. Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. J. Geophys. Res. Biogeosci. 2008, 113, G03031. [Google Scholar] [CrossRef]
- Said Al-Kharusi, E. Broad-Scale Patterns in CDOM and Total Organic Matter Concentrations of Inland Waters—Insights from Remote Sensing and GIS. Ph.D. Thesis, Department of Physical Geography and Ecosystem Science, Faculty of Science, Lund University, Lund, Sweden, 2021. [Google Scholar]
- Zheng, K.; Shao, T.; Ning, J.; Zhuang, D.; Liang, X. Water quality, basin characteristics, and discharge greatly affect CDOM in highly turbid rivers in the Yellow River Basin, China. J. Clean Prod. 2023, 4, 136995. [Google Scholar] [CrossRef]
- Toming, K.; Arst, H.; Paavel, B.; Laas, A.; Nõges, T. Spatial and temporal variations in coloured dissolved organic matter in large and shallow Estonian waterbodies. Bor. Environ. Res. 2009, 14, 959–970. [Google Scholar]
- Kari, E.; Merkouriadi, I.; Walve, J.; Leppäranta, M.; Kratzer, S. Development of under-ice stratification in Himmerfjärden bay, North-Western Baltic proper, and their effect on the phytoplankton spring bloom. J. Mar. Syst. 2018, 186, 85–95. [Google Scholar] [CrossRef]
- Hulatt, C.J.; Thomas, D.N.; Bowers, D.G.; Norman, L.; Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuarine Coast. Shelf Sci. 2009, 84, 147–153. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Viennet, D. The Use of Morpho Granulometry in Source to Sink Monitoring of Particle Transfer in Watersheds. Ph.D. Thesis, École Doctorale Normande de Biologie Intégrative, Santé, Environnement, Mont-Saint-Aignan CEDEX, France, 2020. Available online: http://viaf.org/viaf/408160483843904992099 (accessed on 1 December 2023).
- Pawlik, M.M.; Ficek, D. Spatial Distribution of Pine Pollen Grains Concentrations as a Source of Biologically Active Substances in Surface Waters of the Southern Baltic Sea. Water Sui 2023, 15, 978. [Google Scholar] [CrossRef]
- Hannerz, F.; Destouni, G. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. AMBIO 2006, 35, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Karstens, S.; Buczko, U.; Jurasinski, G.; Peticzka, R.; Glatzel, S. Impact of adjacent land use on coastal wetland sediments. Sci. Total Environ. 2016, 550, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Asplund, M.E.; Björk, M.; Deyanova, D.; Infantes, E.; Isaeus, M.; Nyström Sandman, A.; Gullström, M. The influence of hydrodynamic exposure on carbon storage and nutrient retention in eelgrass (Zostera marina L.) meadows on the Swedish Skagerrak coast. Sci. Rep. 2020, 10, 13666. [Google Scholar] [CrossRef] [PubMed]
Bay | |||||||
---|---|---|---|---|---|---|---|
Bråviken | Himmerfjärden | Östhammar | Råneå | ||||
April 2022 | n = 5 (MRSG) | April 2018 | n = 4 (MRSG) SPM, SPIM, SPOM missing | August 2021 | n = 4 (MG) SPM, SPIM, SPOM missing | July 2018 | n = 4 (MRSG and MG UMF) SPM, SPIM, SPOM not valid |
July 2021 | n = 6 (MRSG) SPM, SPIM, SPOM missing | August 2017 | n = 5 (MG) | Jul 2021 | n = 4 (MG) SPM, SPIM, SPOM missing | June 2018 | n = 4 (MRSG and UMF) SPM, SPIM, SPOM not valid |
April 2018 | n = 8 (MRSG) SCDOM missing | July 2017 | n = 4 (MRSG) | August 2020 | n = 4 (MG) SPM, SPIM, SPOM missing | May 2018 | n = 4 (MRSG and UMF) SPM, SPIM, SPOM not valid |
August 2013 | n = 2 (MG) turbidity, SCDOM missing | May 2012 | n = 4 (MRSG) | July 2020 | n = 4 (MG) SPM, SPIM, SPOM missing | ||
July 2013 | n = 2 (MG) turbidity, SCDOM missing | April 2012 | n = 3 (MRSG) | August 2019 | n = 4 (MG) SPM, SPIM, SPOM missing | ||
June 2013 | n = 2 (MG) turbidity, SCDOM missing | August 2010 | n = 8 (MRSG) | July 2019 | n = 4 (MG) SCDOM, aCDOM, SPM, SPIM, SPOM missing | ||
August 2012 | n = 2 (MG) SCDOM missing | July 2007 | n = 13 (MRSG) | August 2010 | n = 4 (MG) turbidity missing | ||
June 2012 | n = 2 (MG) SCDOM missing | July 2010 | n = 6 (MG) turbidity missing | ||||
Total stations sampled: n = 29 | Total stations sampled: n = 41 | Total stations sampled: n = 34 | Total stations sampled: n = 12 |
Bay | Surface Area | Average Monthly Discharge | Standard Deviation | Min | Max | Yearly Discharge |
---|---|---|---|---|---|---|
Himmerfjärden | 23,370 km2 | 7.9 | ±2.41 | 5.3 | 11 | 95.4 |
Östhammar | 993 km2 | 4.1 | ±3.18 | 0.5 | 8.4 | 49.1 |
Bråviken | 16,400 km2 | 63.9 | ±28.60 | 38.1 | 106.2 | 766.4 |
Råneå | 5670 km2 | 60.4 | ±83.16 | 19.7 | 319.5 | 725.1 |
Urban | Agriculture | Coniferous Forest | Deciduous Forest | Mixed Forest | Meadow | Pasture | Wetland | Water | Barren Land | |
---|---|---|---|---|---|---|---|---|---|---|
Bråviken | 2.6% | 20.0% | 47.3% | 2.6% | 4.3% | 2.5% | 1.4% | 1.0% | 18.4% | 0.0% |
Himmerfjärden | 4.4% | 23.2% | 47.4% | 1.2% | 6.5% | 4.0% | 0.7% | 1.5% | 10.6% | 0.5% |
Östhammar | 2.9% | 11.3% | 56.2% | 1.8% | 14.3% | 8.1% | 1.1% | 0.7% | 3.7% | 0.0% |
Råneå | 0.3% | 1.5% | 52.4% | 1.1% | 8.6% | 13.2% | 0.2% | 19.1% | 3.8% | 0.0% |
Chl-a | SPM | SPIM | SPOM | Turbidity | aCDOM | SCDOM | ||
---|---|---|---|---|---|---|---|---|
μg L−1 | g m−3 | g m−3 | g m−3 | FNU | m−1 | |||
Himmerfjärden | Min | 1.32 | 0.48 | 0.18 | 0.28 | 0.58 | 0.30 | −0.021 |
Max | 13.70 | 2.69 | 1.36 | 1.59 | 1.96 | 0.80 | −0.014 | |
Median | 4.17 | 1.65 | 0.61 | 0.92 | 1.29 | 0.46 | −0.018 | |
N | 36 | 31 | 31 | 31 | 20 | 37 | 37 | |
Bråviken | Min | 2.90 | 2.12 | 1.41 | 0.27 | 1.24 | 0.42 | −0.019 |
Max | 25.05 | 6.77 | 4.90 | 2.55 | 7.48 | 1.62 | −0.017 | |
Median | 6.90 | 4.00 | 2.86 | 0.96 | 3.21 | 0.92 | −0.018 | |
N | 29 | 23 | 23 | 23 | 23 | 29 | 19 | |
Östhammar | Min | 2.30 | 1.75 | 0.26 | 1.49 | 0.93 | 0.60 | −0.018 |
Max | 89.88 | 14.54 | 3.89 | 13.59 | 7.25 | 2.46 | −0.010 | |
Median | 7.97 | 6.24 | 0.68 | 4.29 | 3.16 | 0.91 | −0.017 | |
N | 34 | 6 | 6 | 6 | 24 | 27 | 27 | |
Råneå | Min | 0.55 | 0.64 | 1.15 | −0.018 | |||
Max | 5.69 | 8.90 | 5.18 | −0.016 | ||||
Median | 2.21 | 1.34 | 1.71 | −0.017 | ||||
N | 12 | 12 | 12 | 12 |
Water | Coniferous Forest | Mixed Forest | Meadow | Wetland | Agriculture | |
SCDOM | −0.744 | 0.585 | 0.387 | 0.984 | 0.916 | −0.980 |
aCDOM | −0.510 | 0.421 | 0.166 | 0.882 | 0.933 | −0.944 |
Urban | Pasture | Discharge | Dev* | Natural* | Ratio* | |
SCDOM | −0.878 | −0.767 | 0.829 | −0.985 | 0.998 | −0.975 |
aCDOM | −0.980 | −0.648 | 0.815 | −0.964 | 0.931 | −0.926 |
Water | ConiferousForest | MixedForest | Meadow | Wetland | Agriculture | |
SPM | −0.274 | 0.739 | 0.588 | 0.538 | −0.991 | −0.895 |
SPOM | −0.848 | 0.999 | 0.979 | 0.964 | −0.824 | −0.963 |
Turbidity | 0.164 | 0.379 | 0.185 | 0.125 | −0.839 | 0.618 |
Urban | Pasture | Discharge | Natural* | Dev* | Ratio* | |
SPM | −0.884 | 0.714 | −0.978 | 0.646 | −0.925 | 0.866 |
SPOM | −0.344 | 0.060 | −0.586 | 0.991 | −0.941 | −0.978 |
Turbidity | −0.999 | 0.945 | −0.973 | 0.256 | −0.672 | 0.672 |
Water | Coniferous Forest | Mixed Forest | Heaths | Wetland | Agriculture | |
Chl-a | −0.616 | 0.938 | 0.849 | 0.816 | −0.968 | −0.997 |
Urban | Pasture | Discharge | Natural* | Dev* | Ratio* | |
Chl-a | −0.644 | 0.398 | −0.828 | 0.886 | −1.000 | −0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratzer, S.; Allart, M. Links between Land Cover and In-Water Optical Properties in Four Optically Contrasting Swedish Bays. Remote Sens. 2024, 16, 176. https://doi.org/10.3390/rs16010176
Kratzer S, Allart M. Links between Land Cover and In-Water Optical Properties in Four Optically Contrasting Swedish Bays. Remote Sensing. 2024; 16(1):176. https://doi.org/10.3390/rs16010176
Chicago/Turabian StyleKratzer, Susanne, and Martin Allart. 2024. "Links between Land Cover and In-Water Optical Properties in Four Optically Contrasting Swedish Bays" Remote Sensing 16, no. 1: 176. https://doi.org/10.3390/rs16010176
APA StyleKratzer, S., & Allart, M. (2024). Links between Land Cover and In-Water Optical Properties in Four Optically Contrasting Swedish Bays. Remote Sensing, 16(1), 176. https://doi.org/10.3390/rs16010176