Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm
Abstract
:1. Introduction
2. Research Data
2.1. JPL Mascon Solutions
2.2. Hydrological Data
2.3. Meteorological Data
2.4. Swarm Time-Variable Gravity Field Data
3. Methodology
3.1. BEAST Piecewise Detrending Algorithm
3.2. GMDH Algorithm for Filling the Gap
4. Results
4.1. Filling the Simulated Gap
4.2. Filling the GRACE/GRACE-FO Gap: Comparison with GLDAS and Swarm Solutions
4.3. Filling the GRACE/GRACE-FO Gap: Comparison with the Previous Literature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, W.; Wang, C.; Mu, D.; Zhong, M.; Zhong, Y.; Xu, H. Groundwater storage variations in the North China Plain from GRACE with spatial constraints. Chin. J. Geophys. 2017, 60, 1630–1642. [Google Scholar]
- Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach. J. Geod. 2018, 92, 299–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, W.; Yin, W.; Li, X.; Ma, M. Improving Spatial Resolution of GRACE-Derived Water Storage Changes Based on Geographically Weighted Regression Downscaled Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4261–4275. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X.; Hsu, H. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. J. Geod. 2016, 90, 503–523. [Google Scholar] [CrossRef]
- Yang, T.; Yu, H.; Wang, Y. An efficient low-pass-filtering algorithm to de-noise global GRACE data. Remote Sens. Environ. 2022, 283, 113303. [Google Scholar] [CrossRef]
- Yan, Z.; Ran, J.; Xiao, Y.; Xu, Z.; Wu, H.; Deng, X.-L.; Du, L.; Zhong, M. The Temporal Improvement of Earth’s Mass Transport Estimated by Coupling GRACE-FO With a Chinese Polar Gravity Satellite Mission. J. Geophys. Res. Solid. Earth 2023, 128, e2023JB027157. [Google Scholar] [CrossRef]
- Xu, T.; Mu, D.; Yan, H.; Guo, J.; Yin, P. The causes of contemporary sea level rise over recent two decades: Progress and challenge. Acta Geod. Cartogr. Sin. 2022, 51, 1294. [Google Scholar]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Yao, C.; Shum, C.K.; Luo, Z.; Li, Q.; Lin, X.; Xu, C.; Zhang, Y.; Chen, J.; Huang, Q.; Chen, Y. An optimized hydrological drought index integrating GNSS displacement and satellite gravimetry data. J. Hydrol. 2022, 614, 128647. [Google Scholar] [CrossRef]
- Yan, Z.; Luan, Y.; Ran, J.; Shum, C.K.; Zeng, Z.; Qian, N.; Zhang, Y.; Smith, P.; Pan, X.; Huang, Z. Optimal Design of a Third Pair of Gravity Satellites to Augment Two Existing Polar Pairs to Enhance Earth’s Temporal Gravity Field Recovery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14145–14160. [Google Scholar] [CrossRef]
- Lück, C.; Kusche, J.; Rietbroek, R.; Löcher, A. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits. Solid. Earth 2018, 9, 323. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the data gaps within GRACE missions using singular spectrum analysis. J. Geophys. Res. Solid. Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Chen, Q.; Wang, W. Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multichannel singular spectrum analysis. J. Hydrol. 2021, 594, 125972. [Google Scholar] [CrossRef]
- Richter, H.M.P.; Lück, C.; Klos, A.; Sideris, M.G.; Rangelova, E.; Kusche, J. Reconstructing GRACE-type time-variable gravity from the Swarm satellites. Sci. Rep. 2021, 11, 1117. [Google Scholar] [CrossRef]
- Yang, X.; You, W.; Tian, S.; Jiang, Z.; Wan, X. A Two-Step Linear Model to Fill the Data Gap Between GRACE and GRACE-FO Terrestrial Water Storage Anomalies. Water Resour. Res. 2023, 59, e2022WR034139. [Google Scholar] [CrossRef]
- Sun, Z.; Long, D.; Yang, W.; Li, X.; Pan, Y. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res. 2020, 56, e2019WR026250. [Google Scholar] [CrossRef]
- Li, F.; Kusche, J.; Rietbroek, R.; Wang, Z.; Forootan, E.; Schulze, K.; Lueck, C. Comparison of Data-Driven Techniques to Reconstruct (1992–2002) and Predict (2017–2018) GRACE-Like Gridded Total Water Storage Changes Using Climate Inputs. Water Resour. Res. 2020, 56, e2019WR026551. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y.; He, Y. Bridging the data gap between GRACE and GRACE-FO using artificial neural network in Greenland. J. Hydrol. 2022, 608, 127614. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, S.; He, H.; Yang, K.; Ma, L.; Li, J. Reconstructing GRACE-like TWS anomalies for the Canadian landmass using deep learning and land surface model. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102404. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. The Group Method of Data Handling-A Rival of the Method of Stochastic Approximation. Sov. Autom. Control 1968, 1, 43–55. [Google Scholar]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid. Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. Atmos. 2008, 113, D01103. [Google Scholar] [CrossRef]
- Huffman, G. GPM L3 IMERG Final 1 month 0.1 degree × 0.1 degree precipitation V03. 2015. [Google Scholar] [CrossRef]
- Zehentner, N.; Mayer-Gürr, T. Precise orbit determination based on raw GPS measurements. J. Geod. 2016, 90, 275–286. [Google Scholar] [CrossRef]
- Jäggi, A.; Meyer, U.; Lasser, M.; Jenny, B.; Lopez, T.; Flechtner, F.; Dahle, C.; Förste, C.; Mayer-Gürr, T.; Kvas, A. International Combination Service for Time-Variable Gravity Fields (COST-G) Start of Operational Phase and Future Perspectives. In Beyond 100: The Next Century in Geodesy: Proceedings of the IAG General Assembly, Montreal, QC, Canada, 8–18 July 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 57–65. [Google Scholar]
- da Encarnacao, J.T.; Visser, P.; Arnold, D.; Bezdek, A.; Doornbos, E.; Ellmer, M.; Guo, J.; van den IJssel, J.; Iorfida, E.; Jäggi, A. Description of the multi-approach gravity field models from Swarm GPS data. Earth Syst. Sci. Data 2020, 12, 1385–1417. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. J. Geophys. Res. Solid. Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Tsai, T.-M.; Yen, P.-H. GMDH algorithms applied to turbidity forecasting. Appl. Water Sci. 2017, 7, 1151–1160. [Google Scholar] [CrossRef]
- Qian, N.; Chang, G.; Gao, J. Smoothing for continuous dynamical state space models with sampled system coefficients based on sparse kernel learning. Nonlinear Dyn. 2020, 100, 3597–3610. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Dong, Q.; Wang, Z.; Zhang, H.; Liu, X. Bridging the gap between GRACE and GRACE-FO using a hydrological model. Sci. Total Environ. 2022, 822, 153659. [Google Scholar] [CrossRef] [PubMed]
- Feng, W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data. Earth Sci. Inform. 2019, 12, 389–404. [Google Scholar] [CrossRef]
Driving Data | Correlation Features | Global Mean of Correlation Coefficients | The Number and Proportion of Grid Cells Where BEAST Is Superior | |
---|---|---|---|---|
Long-Term Detrending | BEAST Piecewise Detrending | |||
SWSA | Positive | 0.61 | 0.59 | 32566/61194 (53.2%) |
CWSC | Positive | 0.41 | 0.48 | 55505/61194 (90.7%) |
P | Positive | 0.40 | 0.46 | 45709/61194 (74.7%) |
T | Negative | −0.49 | −0.65 | 59121/61194 (96.6%) |
ET | Negative | −0.34 | −0.49 | 58990/61194 (96.4%) |
Filling Scheme | R | NSE | NRMSE |
---|---|---|---|
MLR | 0.83 | 0.66 | 0.44 |
SSA | 0.91 | 0.70 | 0.49 |
BEAST + GMDH | 0.93 | 0.83 | 0.18 |
Basin | GLDAS Noah | COST-G Swarm | IFG Swarm |
---|---|---|---|
Amazon | 0.96 | 0.97 | 0.96 |
Congo | 0.84 | 0.78 | 0.84 |
Danube | 0.95 | 0.84 | 0.79 |
Euphrates | 0.93 | 0.31 | 0.73 |
Ganges | 0.96 | 0.91 | 0.89 |
Kolyma | 0.94 | 0.72 | 0.83 |
Lena | 0.79 | 0.72 | 0.81 |
Mississippi | 0.97 | 0.29 | 0.68 |
Nile | 0.87 | 0.45 | 0.30 |
Ob | 0.95 | 0.90 | 0.96 |
Volga | 0.95 | 0.85 | 0.90 |
Yenisey | 0.96 | 0.84 | 0.83 |
Yukon | 0.85 | 0.07 | 0.68 |
Zambezi | 0.91 | 0.87 | 0.96 |
Mean Values | 0.92 | 0.68 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, N.; Gao, J.; Li, Z.; Yan, Z.; Feng, Y.; Yan, Z.; Yang, L. Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm. Remote Sens. 2024, 16, 3693. https://doi.org/10.3390/rs16193693
Qian N, Gao J, Li Z, Yan Z, Feng Y, Yan Z, Yang L. Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm. Remote Sensing. 2024; 16(19):3693. https://doi.org/10.3390/rs16193693
Chicago/Turabian StyleQian, Nijia, Jingxiang Gao, Zengke Li, Zhaojin Yan, Yong Feng, Zhengwen Yan, and Liu Yang. 2024. "Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm" Remote Sensing 16, no. 19: 3693. https://doi.org/10.3390/rs16193693
APA StyleQian, N., Gao, J., Li, Z., Yan, Z., Feng, Y., Yan, Z., & Yang, L. (2024). Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm. Remote Sensing, 16(19), 3693. https://doi.org/10.3390/rs16193693