Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array
Abstract
:1. Introduction
1.1. Geologic Background
1.2. P-Wave Coda Autocorrelation
2. Data and Method
3. Results
4. Discussion
4.1. Moho Discontinuity
4.2. Lower Crustal Low-Velocity Body
4.3. Shallow Magma Chamber
4.4. LAB
5. Conclusions
- We imaged the lithosphere–asthenosphere boundary (LAB) at a depth of approximately 70 km, accompanied by notable reflectivity features at the base of the lithosphere.
- Our findings identified two distinct low-velocity anomalies with negative polarity. The first anomaly, positioned at a shallow depth of approximately 15 km, aligns with previous research indicating the existence of a magma chamber filled with molten magma. The second anomaly, located approximately 30 km beneath the Wangtian’e volcano in the southern part of Tianchi, corresponds to a cooled felsic body.
- A significant energy attenuation phenomenon was observed at the Moho position beneath Tianchi, suggesting a potential pathway for magma to enter the crust. Previous research has indicated the presence of molten magma in the deep crust beneath the Changbai volcano, with a magma chamber being continuously supplied by thermal material from the mantle. The observed decrease in P-wave reflectivity at this location may be attributed to the presence of molten magma or the deposition of cooled magma resulting from ongoing magmatic activity. Based on these observations, we propose that this location likely serves as a conduit for magma entry into the crust.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Han, J.; Fyfe, W.S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K–Ar geochronology. Tectonophysics 2001, 339, 385–401. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Wei, H.; Shan, X. Late Pliocene–recent tectonic setting for the Tianchi volcanic zone, Changbai Mountains, northeast China. J. Asian Earth Sci. 2003, 21, 1159–1170. [Google Scholar] [CrossRef]
- Wei, H.; Liu, G.; Gill, J. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: Implications for possible future eruptions. Bull. Volcanol. 2013, 75, 1–14. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, R.; Zhang, G.; Sui, J. The Genesis and Evolution of Bimodal Volcanic Rocks in Wangtian'e Volcano, Changbaishan. Yanshi Xuebao/Acta Petrol. Sin. 1998, 14, 305–317. [Google Scholar]
- Fan, Q.; Liu, R.; Li, D.; Li, Q. Significance of K-Ar age of bimodal volcanic rocks at Wangtian' e volcano, Changbaishan area. Chin. Sci. Bull. 1999, 44, 660–663. [Google Scholar] [CrossRef]
- Liu, J.; Pan, J.; Naik, S.; Santangini, H.; Trenkler, D.; Thompson, N.; Rifai, A.; Chowdhury, J.R.; Jauregui, H.O. Characterization and Evaluation of Detoxification Functions of a Nontumorigenic Immortalized Porcine Hepatocyte Cell Line (HepLiu). Cell Transplantation 1999, 8, 219–232. [Google Scholar] [CrossRef]
- Horn, S.; Schmincke, H.U. Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull. Volcanol. 2000, 61, 537–555. [Google Scholar] [CrossRef]
- Oppenheimer, C. Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption. Int. J. Climatol. 2003, 23, 417–426. [Google Scholar] [CrossRef]
- Taniguchi, H. Carbohydrate research and industry in Japan and the Japanese society of applied glycoscience. Starch/Staerke 2004, 56, 1–5. [Google Scholar] [CrossRef]
- Guo, Z.; Hertogen, J.; Liu, J.; Pasteels, P.; Boven, A.; Punzalan, L.; He, H.; Luo, X.; Zhang, W. Potassic magmatism in western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and geochemical constraints on petrogenesis. J. Petrol. 2005, 46, 33–78. [Google Scholar] [CrossRef]
- Stone, R. Is China’s Riskiest Volcano Stirring or Merely Biding Its Time? Science 2010, 329, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.K.W.; Chan, K.H.; Yu, K.Y.; Ng, H.T.; Wong, W.K. An empirical study of the impact of intellectual capital on business performance. J. Inf. Knowl. Manag. 2011, 10, 11–21. [Google Scholar] [CrossRef]
- Stone, R. Vigil at North Korea's Mount Doom. Science 2011, 334, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, G.; Wu, J.; Ming, Y.; Wang, Q.; Cui, D.; Shangguan, Z.; Pan, B.; Lin, X.; Liu, J. Recent unrest of Changbaishan volcano, northeast China: A precursor of a future eruption? Geophys. Res. Lett. 2012, 39, L16305. [Google Scholar] [CrossRef]
- Yin, J.; Jull, A.J.T.; Burr, G.S.; Zheng, Y. A wiggle-match age for the Millennium eruption of Tianchi Volcano at Changbaishan, Northeastern China. Quat. Sci. Rev. 2012, 47, 150–159. [Google Scholar] [CrossRef]
- Liu, J.-q.; Chen, S.-s.; Guo, Z.-f.; Guo, W.-f.; He, H.-y.; You, H.-t.; Kim, H.-m.; Sung, G.-h.; Kim, H. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China–Korea border. Lithos 2015, 236–237, 46–73. [Google Scholar] [CrossRef]
- Choi, S.; Oh, C.-W.; Götze, H.-J. Three-dimensional density modeling of the EGM2008 gravity field over the Mount Paekdu volcanic area. J. Geophys. Res. Solid Earth 2013, 118, 3820–3836. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, F.; Chen, Y.J.; Grand, S.; Kawakatsu, H.; Ning, J.; Tanaka, S.; Obayashi, M.; Ni, J. Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link. Earth Planet. Sci. Lett. 2015, 412, 101–111. [Google Scholar] [CrossRef]
- Kim, S.; Tkalčić, H.; Rhie, J. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data. J. Geophys. Res. Solid Earth 2017, 122, 5452–5473. [Google Scholar] [CrossRef]
- Li, H.; Tian, Y.; Zhao, D.; Kumar, R.; Li, H.; Yan, D.; Liu, C. Shear-wave tomography of the Changbai volcanic area in NE China derived from ambient noise and seismic surface waves. J. Asian Earth Sci. 2023, 258, 105482. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, J.; Tang, R. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin. Sci. Bull. 2004, 49, 1401–1408. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 2005, 397, 281–295. [Google Scholar] [CrossRef]
- Zhao, D.; Maruyama, S.; Omori, S. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res. 2007, 11, 120–131. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, H.; Zhao, D.; Liu, C.; Feng, X.; Liu, T.; Ma, J. Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410 km discontinuity. J. Geophys. Res. Solid Earth 2016, 121, 5794–5808. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, D.; Wang, T.; Weng, A.; Li, Y.; Guo, J.; Wang, X. Undulating electrical lithosphere–asthenosphere boundary beneath Northeast China; as revealed by long–period magnetotelluric data. Tectonophysics 2023, 851, 229770. [Google Scholar] [CrossRef]
- Zhang, G.C.; Wu, Q.J.; Pan, J.T.; Zhang, F.X.; Yu, D.X. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods. Acta Geophys. Sin. 2013, 56, 4084–4094. [Google Scholar] [CrossRef]
- Yang, B.; Lin, W.; Hu, X.; Fang, H.; Qiu, G.; Wang, G. The magma system beneath Changbaishan-Tianchi Volcano, China/North Korea: Constraints from three-dimensional magnetotelluric imaging. J. Volcanol. Geotherm. Res. 2021, 419, 107385. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, G.; Wang, J.J.; Zhan, Y.; Deng, Q.H.; Chen, X. Study of the formation mechanism for volcanism in Northeast China based on deep electric structure. Acta Petrol. Sin. 2006, 22, 1503–1510. [Google Scholar]
- Qiu, G.G.; Pei, F.G.; Fang, H.; Du, B.R.; Zhang, X.B.; Zhang, P.H.; Yan, Y.Z.; He, M.X.; Bai, D.W. Analysis of magma chamber at the Tianchi volcano area in Changbai mountain. Chin. J. Geophys. 2014, 10, 3466–3477. [Google Scholar]
- Pan, B.; de Silva, S.L.; Xu, J.; Chen, Z.; Miggins, D.P.; Wei, H. The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics. J. Volcanol. Geotherm. Res. 2017, 343, 45–59. [Google Scholar] [CrossRef]
- Andreeva, O.A.; Yarmolyuk, V.V.; Andreeva, I.A.; Borisovskiy, S.E. Magmatic Evolution of Changbaishan Tianchi Volcano, China–North Korea: Evidence from Mineral-Hosted Melt and Fluid Inclusions. Petrology 2018, 26, 515–545. [Google Scholar] [CrossRef]
- Yi, J.; Wang, P.; Shan, X.; Ventura, G.; Wu, C.; Guo, J.; Liu, P.; Li, J. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr-Nd isotopic and integrated geophysical data. Geosci. Front. 2021, 12, 101171. [Google Scholar] [CrossRef]
- Claerbout, J.F. Synthesis of a layered medium from its acoustic transmission response. Geophysics 1968, 33, 264–269. [Google Scholar] [CrossRef]
- Wapenaar, K. Synthesis of an inhomogeneous medium from its acoustic transmission response. Geophysics 2003, 68, 1756–1759. [Google Scholar] [CrossRef]
- Ruigrok, E.; Wapenaar, K. Global-phase seismic interferometry unveils P-wave reflectivity below the Himalayas and Tibet. Geophys. Res. Lett. 2012, 39, L11303. [Google Scholar] [CrossRef]
- Sun, W.; Kennett, B.L.N. Receiver structure from teleseisms: Autocorrelation and cross correlation. Geophys. Res. Lett. 2016, 43, 6234–6242. [Google Scholar] [CrossRef]
- Galetti, E.; Curtis, A. Generalised receiver functions and seismic interferometry. Tectonophysics 2012, 532–535, 532–535,. [Google Scholar] [CrossRef]
- Tauzin, B.; Phạm, T.S.; Tkalčić, H. Receiver functions from seismic interferometry: A practical guide. Geophys. J. Int. 2019, 217, 1–24. [Google Scholar] [CrossRef]
- Gorbatov, A.; Saygin, E.; Kennett, B.L.N. Crustal properties from seismic station autocorrelograms. Geophys. J. Int. 2013, 192, 861–870. [Google Scholar] [CrossRef]
- Becker, G.; Knapmeyer-Endrun, B. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations. Geophys. J. Int. 2018, 212, 1237–1254. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Sippl, C. Lithospheric discontinuities in Central Australia. Tectonophysics 2018, 744, 10–22. [Google Scholar] [CrossRef]
- Sun, W.; Kennett, B.L.N. Uppermost mantle P wavespeed structure beneath eastern China and its surroundings. Tectonophysics 2016, 683, 12–26. [Google Scholar] [CrossRef]
- Sun, W.; Kennett, B.L.N. Mid-lithosphere discontinuities beneath the western and central North China Craton. Geophys. Res. Lett. 2017, 44, 1302–1310. [Google Scholar] [CrossRef]
- Liang, S.; Kennett, B.L.N. Passive seismic imaging of a craton edge—Central Australia. Tectonophysics 2020, 797, 228662. [Google Scholar] [CrossRef]
- Phạm, T.-S.; Tkalčić, H. On the feasibility and use of teleseismic P wave coda autocorrelation for mapping shallow seismic discontinuities. J. Geophys. Res. Solid Earth 2017, 122, 3776–3791. [Google Scholar] [CrossRef]
- Dueker, K.G.; Sheehan, A.F. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. Solid Earth 1997, 102, 8313–8327. [Google Scholar] [CrossRef]
- Han, S.; Zhang, H.; Xin, H.; Shen, W.; Yao, H. USTClitho2.0: Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data. Seismol. Res. Lett. 2021, 93, 201–215. [Google Scholar] [CrossRef]
- Schimmel, M.; Paulssen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int. 1997, 130, 497–505. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, N.; Hu, Y.; Zhang, W. Feasibility of Estimating Parameters and Enhancing Reflections of Dipping Moho From Teleseismic P Wave Coda Autocorrelation. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023688. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, Y.; Wang, X.; John Chen, Y.; Ning, J.; He, W.; Tang, Y.; Feng, Y. Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthq. Sci. 2014, 27, 265–275. [Google Scholar] [CrossRef]
- Zhu, H.; Tian, Y.; Zhao, D.; Li, H.; Liu, C. Seismic Structure of the Changbai Intraplate Volcano in NE China From Joint Inversion of Ambient Noise and Receiver Functions. J. Geophys. Res. Solid Earth 2019, 124, 4984–5002. [Google Scholar] [CrossRef]
- Zhang, C.K.; Zhang, X.K.; Zhang, J.R.; Liu, B.F.; Zhang, J.S.; Yang, Z.X.; Hai, Y.; Sun, G.W. Study on the crustal and upper mantle structure in the Tianchi volcanic region and its adjacent area of Changbaishan. Chin. J. Geophys. 2002, 45, 812–820. (In Chinese) [Google Scholar]
- Zhang, M.; Guo, Z.; Liu, J.; Liu, G.; Zhang, L.; Lei, M.; Zhao, W.; Ma, L.; Sepe, V.; Ventura, G. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Sci. Rev. 2018, 187, 19–52. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, C.; Gu, C.; Zhang, S.; Li, Y.; Su, N.; Xiao, S. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone. Sci. China Earth Sci. 2018, 61, 386–405. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Cui, T.; Qian, C.; Liu, F.; Zhang, C.; Wang, Z.; Wang, Y.; Hou, T.; Tian, Y. Thermal structure beneath Changbaishan Volcano, northeastern Asia: New insights from temperature logging and numerical modelling. Geophys. J. Int. 2023, 235, 1228–1239. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Z.; Afonso, J.C.; Handley, H.; Dai, H.; Yang, Y.; Chen, Y.J. Lithosphere–asthenosphere interactions beneath northeast China and the origin of its intraplate volcanism. Geology 2021, 50, 210–215. [Google Scholar] [CrossRef]
- Guan, Y.W.; Choi, S.C.; Yang, G.D.; Liu, J.Q.; Lee, Y.S.; Oh, C.W.; Jin, X.; Wu, Y.G. Changbaishan Tianchi volcano crustal magma chambers modeling with gravity profile. Acta Petrol. Sin. 2020, 36, 3840–3852. [Google Scholar] [CrossRef]
- Meng, F.; Ai, Y.; Xu, T.; Chen, L.; Wang, X.; Li, L. Lithospheric structure beneath the boundary region of North China Craton and Xing Meng Orogenic Belt from S-receiver function analysis. Tectonophysics 2021, 818, 229067. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.-F.; Chen, L.; Wang, X.; Guo, G.; Li, T.; Zhang, K.; Li, J.; Chen, Y. Distinct Lithospheric Structure in the Xing'an-Mongolian Orogenic Belt. Geophys. Res. Lett. 2022, 49, e2021GL097283. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Shi, Y.; Zhang, C.; Wang, Z.; Hu, D. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics 2019, 753, 36–48. [Google Scholar] [CrossRef]
- Yan, D.; Tian, Y.; Zhao, D.; Li, H. Thermal and rheological structure of lithosphere beneath Northeast China. Tectonophysics 2022, 840, 229560. [Google Scholar] [CrossRef]
- Kyong-Song, R.; Hammond, J.O.S.; Chol-Nam, K.; Hyok, K.; Yong-Gun, Y.; Gil-Jong, P.; Chong-Song, R.; Oppenheimer, C.; Liu, K.W.; Iacovino, K.; et al. Evidence for partial melt in the crust beneath Mt. Paektu (Changbaishan), Democratic People’s Republic of Korea and China. Sci. Adv. 2016, 2, e1501513. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-O.; Choi, S.H.; Schiano, P.; Cho, M.; Cluzel, N.; Devidal, J.-L.; Ha, K. Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: Implications for recycling of oceanic crustal materials into the mantle source. Lithos. [CrossRef]
- Karato, S.-i.; Jung, H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 1998, 157, 193–207. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, K.; Yang, Y.; Tang, Y.; John Chen, Y.; Hung, S.-H. The Origin and Mantle Dynamics of Quaternary Intraplate Volcanism in Northeast China from Joint Inversion of Surface Wave and Body Wave. J. Geophys. Res. Solid Earth 2018, 123, 2410–2425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Tian, Y.; Liu, C.; Li, H. Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array. Remote Sens. 2024, 16, 3615. https://doi.org/10.3390/rs16193615
Wen H, Tian Y, Liu C, Li H. Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array. Remote Sensing. 2024; 16(19):3615. https://doi.org/10.3390/rs16193615
Chicago/Turabian StyleWen, Hao, You Tian, Cai Liu, and Hongli Li. 2024. "Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array" Remote Sensing 16, no. 19: 3615. https://doi.org/10.3390/rs16193615
APA StyleWen, H., Tian, Y., Liu, C., & Li, H. (2024). Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array. Remote Sensing, 16(19), 3615. https://doi.org/10.3390/rs16193615