Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia)
Abstract
:1. Introduction
2. Sava Fault
3. Materials and Methods
3.1. Lidar Data and UAV Photogrammetry
3.2. Geomorphological Mapping
3.3. Structural Geological Mapping
3.4. Electrical Resistivity Tomography (ERT)
3.5. Ground-Penetrating Radar (GPR)
3.6. Optically Stimulated Luminescence (OSL) and Radiocarbon Dating (14C)
3.6.1. Sampling
3.6.2. 14C Dating
3.6.3. Luminescence Dating
4. Results and Interpretations
4.1. Geomorphological Map
4.1.1. Povlje Location
4.1.2. Laško Location
4.2. Displacements of Geomorphological Indicators
4.2.1. Povlje Location
4.2.2. Laško Location
4.3. Structural Geological Map
4.3.1. Lithology
4.3.2. Structure
4.4. Electrical Resistivity Tomography (ERT)
4.4.1. Povlje Location
4.4.2. Laško Location
4.5. Ground-Penetrating Radar (GPR)
4.6. Displacements of Channels Identified with GPR
4.7. Dating the Povlje Fan
5. Discussion
5.1. Comparison of Displacements
5.2. Slip Rate
5.3. Implications for Seismic Hazard
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCalpin, J.; Ferrario, F.; Figueiredo, P.; Livio, F.; Grützner, C.; Pisarska-Jamroży, M.; Quigley, M.; Reicherter, K.; Rockwell, T.; Štěpančíková, P.; et al. New Developments in Onshore Paleoseismic Methods, and Their Impact on Quaternary Tectonic Studies. Quat. Int. 2023, 664, 59–76. [Google Scholar] [CrossRef]
- Cunningham, D.; Grebby, S.; Tansey, K.; Gosar, A.; Kastelic, V. Application of Airborne LiDAR to Mapping Seismogenic Faults in Forested Mountainous Terrain, Southeastern Alps, Slovenia. Geophys. Res. Lett. 2006, 33, L20308. [Google Scholar] [CrossRef]
- Moulin, A.; Benedetti, L.; Gosar, A.; Jamšek Rupnik, P.; Rizza, M.; Bourlès, D.; Ritz, J.F. Determining the Present-Day Kinematics of the Idrija Fault (Slovenia) from Airborne LiDAR Topography. Tectonophysics 2014, 628, 188–205. [Google Scholar] [CrossRef]
- Moulin, A.; Benedetti, L.; Rizza, M.; Jamšek Rupnik, P.; Gosar, A.; Bourlès, D.; Keddadouche, K.; Aumaître, G.; Arnold, M.; Guillou, V.; et al. The Dinaric Fault System: Large-Scale Structure, Rates of Slip, and Plio-Pleistocene Evolution of the Transpressive Northeastern Boundary of the Adria Microplate. Tectonics 2016, 35, 2258–2292. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Min, W.; Ha, G.; Lei, J. The Advance in Obtaining Fault Slip Rate of Strike Slip Fault—A Review. Earthq. Res. Adv. 2021, 1, 100032. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Shao, Y.; Yao, Y. Late Pleistocene Slip Rates on an Active Normal Fault in the Northwestern Ordos Block, China. Front. Earth Sci. 2022, 10, 916905. [Google Scholar] [CrossRef]
- Ferrater, M.; Arrowsmith, R.; Masana, E.; Abellan, A.; Derron, M.-H.; Jaboyedoff, M.; Lu, Z.; Thenkabail, P.S. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula). Remote Sens. 2015, 7, 14827–14852. [Google Scholar] [CrossRef]
- Grützner, C.; Aschenbrenner, S.; Jamšek Rupnik, P.; Reicherter, K.; Saifelislam, N.; Vičič, B.; Vrabec, M.; Welte, J.; Ustaszewski, K. Holocene Surface-Rupturing Earthquakes on the Dinaric Fault System, Western Slovenia. Solid Earth 2021, 12, 2211–2234. [Google Scholar] [CrossRef]
- Ha, S.; Son, M.; Seong, Y.B. Active Fault Trace Identification Using a LiDAR High-Resolution DEM: A Case Study of the Central Yangsan Fault, Korea. Remote Sens. 2022, 14, 4838. [Google Scholar] [CrossRef]
- Falcucci, E.; Poli, M.E.; Galadini, F.; Scardia, G.; Paiero, G.; Paiero, G.; Zanferrari, A. First Evidence of Active Transpressive Surface Faulting at the Front of the Eastern Southern Alps, Northeastern Italy: Insight on the 1511 Earthquake Seismotectonics. Solid Earth 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Poli, M.E.; Falcucci, E.; Gori, S.; Monegato, G.; Zanferrari, A.; Affatato, A.; Baradello, L.; Böhm, G.; Bo, I.D.; Del Pin, E.; et al. Paleoseismological Evidence for Historical Ruptures along the Meduno Thrust (Eastern Southern Alps, NE Italy). Tectonophysics 2021, 818, 229071. [Google Scholar] [CrossRef]
- Štěpančíková, P.; Rockwell, T.K.; Stemberk, J.; Rhodes, E.J.; Hartvich, F.; Luttrell, K.; Myers, M.; Tábořík, P.; Rood, D.H.; Wechsler, N.; et al. Acceleration of Late Pleistocene Activity of a Central European Fault Driven by Ice Loading. Earth Planet Sci. Lett. 2022, 591, 117596. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P.; Žebre, M.; Jež, J.; Zajc, M.; Preusser, F.; Monegato, G. Deciphering the Deformation Mechanism in Quaternary Deposits along the Idrija Fault in the Formerly Glaciated Soča Valley, Southeast European Alps. Eng. Geol. 2022, 297, 106515. [Google Scholar] [CrossRef]
- Naik, S.P.; Gwon, O.; Park, K.; Bae, S.Y.; Shin, H.-C.; Choi, J.-H.; Kim, Y.-S. Localization and Characterization of the Southern Ulsan Fault (UF) Using Geo-Electrical Imaging: Implication for Seismic Hazard Assessment in an Urbanized Area. J. Geodyn. 2022, 151, 101919. [Google Scholar] [CrossRef]
- Galli, P.A.C.; Giocoli, A.; Peronace, E.; Piscitelli, S.; Quadrio, B.; Bellanova, J. Integrated near Surface Geophysics across the Active Mount Marzano Fault System (Southern Italy): Seismogenic Hints. Int. J. Earth Sci. 2014, 103, 315–325. [Google Scholar] [CrossRef]
- Danciu, L.; Nandan, S.; Reyes, C.; Basili, R.; Weatherill, G.; Beauval, C.; Rovida, A.; Vilanova, S.; Sesetyan, K.; Bard, P.-Y.; et al. The 2020 Update of the European Seismic Hazard Model-ESHM20: Model Overview; EFEHR Technical Report 001, v1.0.0.; ETH: Zurich, Switzerland, 2021. [Google Scholar] [CrossRef]
- Basili, R.; Danciu, L.; Beauval, C.; Sesetyan, K.; Pires, S.; Carafa, M.M.C.; Cushing, E.M.; Custudio, S.; Demircioglu Tumsa, M.B.; Duarte, J.; et al. The European Fault-Source Model 2020 (EFSM20): Geologic Input Data for the European Seismic Hazard Model 2020. Nat. Hazards Earth Syst. Sci.—Discuss 2023. [Google Scholar] [CrossRef]
- Fodor, L.; Jelen, B.; Márton, E.; Márton, E.; Skaberne, D.; Čar, J.; Vrabec, M. Miocene-Pliocene Tectonic Evolution of the Slovenian Periadriatic Fault: Implications for Alpine-Carpathian Extrusion Models. Tectonics 1998, 17, 690–709. [Google Scholar] [CrossRef]
- Vrabec, M.; Fodor, L. Late Cenozoic Tectonics of Slovenia: Structural Styles at the Northeastern Corner of the Adriatic Microplate. In The Adria Microplate: GPS Geodesy, Tectonics and Hazards (NATO Science Series IV, Earth and Environmental Sciences 61); Pinter, N., Gyula, G., Weber, J., Stein, S., Medak, D., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 151–168. [Google Scholar]
- Anderson, H.; Jackson, J. Active Tectonics of the Adriatic Region. Geophys. J. Int. 1987, 91, 937–983. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P.; Benedetti, L.; Bavec, M.; Vrabec, M. Geomorphic Indicators of Quaternary Activity of the Sava Fault between Golnik and Preddvor. RMZ—Mater. Geoenvironment 2012, 59, 299–314. [Google Scholar]
- Atanackov, J.; Jamšek Rupnik, P.; Jež, J.; Celarc, B.; Novak, M.; Milanič, B.; Markelj, A.; Bavec, M.; Kastelic, V. Database of Active Faults in Slovenia: Compiling a New Active Fault Database at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains. Front. Earth Sci. 2021, 9, 604388. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P. Geomorphological Evidence of Active Tectonics in the Ljubljana Basin. Ph.D. Dissertation, University of Ljubljana, Ljubljana, Slovenia, 2013. [Google Scholar]
- Vrabec, M. Strukturna Analiza Cone Savskega Preloma Med Trstenikom in Stahovico. Ph.D. Thesis, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia, 2001. [Google Scholar]
- Bohinec, V. K Morfologiji in Glaciologiji Rateške Pokrajine. Geogr. Vestn. 1935, 11, 100–132. [Google Scholar]
- Kuščer, D. Prispevek h glacialni geologiji radovljiške kotline. Geologija 1955, 3, 136–150. [Google Scholar]
- Melik, A. Nekaj Glacioloških Opažanj Iz Zgornje Doline. Geogr. Zb. 1955, 3, 299–318. [Google Scholar]
- Melik, A. Vitranc, Zelenci in Bovško: Geomorfološke Študije Iz Zahodnih Julijskih Alp. Geogr. Zb. 1961, 6, 287–332. [Google Scholar]
- Gams, I. Prispevek k Mladokvartarni Geomorfologiji v Zgornjesavski Dolini = A Contribution to the Young Quaternary Geomorphology in the Upper Sava Valley. Geogr. Zb. 1992, 32, 5–49. [Google Scholar]
- Bavec, M.; Verbič, T. Glacial History of Slovenia. Dev. Quat. Sci. 2011, 15, 385–392. [Google Scholar] [CrossRef]
- Poli, M.E.; Zanferrari, A. The Seismogenic Sources of the 1976 Friuli Earthquakes: A New Seismotectonic Model for the Friuli Area. Boll. Di Geofis. Teor. Ed Appl. 2018, 59, 463–480. [Google Scholar]
- Bajc, J.; Aoudia, A.; Saraò, A.; Suhadolc, P. The 1998 Bovec-Krn Mountain (Slovenia) Earthquake Sequence. Geophys. Res. Lett. 2001, 28, 1839–1842. [Google Scholar] [CrossRef]
- Pondrelli, S.; Pondrelli, S.; Ekström, G.; Morelli, A. Seismotectonic Re-Evaluation of the 1976 Friuli, Italy, Seismic Sequence. J. Seismol. 2001, 5, 73–83. [Google Scholar] [CrossRef]
- Kastelic, V.; Vrabec, M.; Cunningham, D.; Gosar, A.; Gosar, A. Neo-Alpine Structural Evolution and Present-Day Tectonic Activity of the Eastern Southern Alps: The Case of the Ravne Fault, NW Slovenia. J. Struct. Geol. 2008, 30, 963–975. [Google Scholar] [CrossRef]
- Herak, M.; Herak, D.; Orlić, N. Properties of the Zagreb 22 March 2020 Earthquake Sequence—Analyses of the Full Year of Aftershock Recording. Geofizika 2021, 38, 93–116. [Google Scholar] [CrossRef]
- Caracciolo, C.H.; Slejko, D.; Camassi, R.; Castelli, V. The Eastern Alps Earthquake of 25 January 1348: New Insights from Old Sources. Bull. Geophys. Oceanogr. 2021, 63, 335–364. [Google Scholar] [CrossRef]
- Ehlers, J.; Gibbard, P.L.; Hughes, P.D. Supplementary Data to Quaternary Glaciations—Extent and Chronology, a Closer Look; Dev. Quaternary Sci.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- Slovenian Environment Agency LIDAR. Available online: http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso (accessed on 1 March 2020).
- Placer, L. Displacement along the Sava Fault. Geologija 1996, 39, 283–287. [Google Scholar] [CrossRef]
- Vrabec, M.; Prešeren Pavlovčič, P.; Stopar, B. GPS Study (1996–2002) of Active Deformation along the Periadriatic Fault System in Northeastern Slovenia: Tectonic Model. Geol. Carpathica 2006, 57, 57–65. [Google Scholar]
- Kastelic, V.; Carafa, M.M.C. Fault Slip Rates for the Active External Dinarides Thrust-and-Fold Belt. Tectonics 2012, 31, TC3019. [Google Scholar] [CrossRef]
- Basili, R.; Basilic, R.; Kastelic, V.; Demircioglu, M.B.; Moreno, D.G.; Moreno, D.G.; Nemser, E.; Petricca, P.; Sboras, S.; Besana-Ostman, G.M.; et al. The European Database of Seismogenic Faults (EDSF) Compiled in the Framework of the Project SHARE; INGV: Roma, Italy, 2013. [Google Scholar] [CrossRef]
- Šket Motnikar, B.; Zupančič, P.; Živčić, M.; Atanackov, J.; Jamšek Rupnik, P.; Čarman, M.; Danciu, L.; Gosar, A. The 2021 Seismic Hazard Model for Slovenia (SHMS21): Overview and Results. Bull. Earthq. Eng. 2022, 20, 4865–4894. [Google Scholar] [CrossRef]
- Atanackov, J.; Jamšek Rupnik, P.; Zupančič, P.; Šket Motnikar, B.; Živčić, M.; Čarman, M.; Milanič, B.; Kastelic, V.; Rajh, G.; Gosar, A. Seismogenic Fault and Area Sources for Probabilistic Seismic Hazard Model in Slovenia. Pangaea 2022. [Google Scholar] [CrossRef]
- Asserato, R.; Desio, A.; Colberttaldo, D.D.; Passeri, L.D. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:100 000, Foglio 14 “Tarvisio”; Min. Industria, Commercio e Artigianato, Dir. Generale delle Miniere, Servizio Geologico d’Italia: Ercolano (Napoli), Italy, 1968; pp. 1–70. [Google Scholar]
- Carulli, G.B.; Bella Vedova, B.; Podda, F.; Slejko, D.; Zanolla, C. Note Illustrative Della Carta Geologica Del Friuli Venezia Giulia, Scala 1: 150 000; Regione Autonoma Friuli Venezia Giulia, Direzione Centrale Ambiente e Lavori Pubblici, Servizio Geologico Regionale: Trieste, Italy, 2006. [Google Scholar]
- Hammerl, C.; Albini, P.; Moroni, A. The Earthquake of January 25th, 1348: Discussion of Sources. Hist. Investig. Eur. Earthq. 1994, 2, 225–240. [Google Scholar]
- Živčić, M. Catalog of Earthquakes in Slovenia; Excel Spreadsheet. Internal Documentation; Ministry of Agriculture and Environment, Slovenian Environment Agency, Seismology and Geology Office: Ljubljana, Slovenia, 2009.
- Zorn, M. Podori na Dobraču. Geografski vestnik 2002, 74, 9–20. [Google Scholar]
- Mrak, I.; Merchel, S.; Benedetti, L.; Braucher, R.; Bourles, D.; Finkel, R.C.; Reitner, J.M. Uporaba Metode Datiranja Površinske Izpostavljenosti Na Primeru Podora Veliki Vrh. In Proceedings of the Naravne Nesreče v Sloveniji: Zbornik Povzetkov. 1. Trienalni Znanstveni Posvet, Ig, Ljubljana, Slovenia, 12 December 2008; Zorn, M., Komac, B., Pavšek, M., Pagon, P., Eds.; Geografski inštitut Antona Melika ZRC SAZU: Ljubljana, Slovenia, 2010; pp. 105–111. [Google Scholar]
- Merchel, S.; Mrak, I.; Braucher, R.; Benedetti, L.; Repe, B.; Bourlès, D.L.; Reitner, J.M. Surface Exposure Dating of the Veliki Vrh Rock Avalanche in Slovenia Associated with the 1348 Earthquake. Quat. Geochronol. 2014, 22, 33–42. [Google Scholar] [CrossRef]
- Kázmér, M.; Jamšek Rupnik, P.; Gaidzik, K. Seismic Activity in the Celje Basin (Slovenia) in Roman Times—Archaeoseismological Evidence from Celeia. Quaternary 2023, 6, 10. [Google Scholar] [CrossRef]
- Bagagli, M.; Molinari, I.; Diehl, T.; Kissling, E.; Giardini, D.; Clinton, J.; Scarabello, L.; Käestli, P.; Racine, R.; Massin, F.; et al. The AlpArray Research Seismicity-Catalogue. Geophys. J. Int. 2022, 231, 921–943. [Google Scholar] [CrossRef]
- Hofman, L.J.; Kummerow, J.; Cesca, S. A New Seismicity Catalogue of the Eastern Alps Using the Temporary Swath-D Network. Solid Earth 2023, 14, 1053–1066. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P.; Živčić, M.; Atanackov, J.; Celarc, B.; Jež, J.; Novak, M.; Milanič, B.; Jesenko, T.; Ložar Stopar, M.; Bavec, M. Seismotectonic Map. In Geological atlas of Slovenia; Novak, M., Rman, N., Eds.; Geological Survey of Slovenia: Ljubljana, Slovenia, 2016; pp. 96–97. [Google Scholar]
- Rovida, A.; Antonucci, A.; Locati, M. The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 Catalogue for the European Seismic Hazard Model 2020. Earth Syst. Sci. Data 2022, 14, 5213–5231. [Google Scholar] [CrossRef]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the Potential of Post-Processing Kinematic (PPK) Georeferencing for UAV-Based Structure-from-Motion (SfM) Photogrammetry and Surface Change Detection. Earth Surf. Dyn. 2019, 7, 807–827. [Google Scholar] [CrossRef]
- Cirillo, D.; Cerritelli, F.; Agostini, S.; Bello, S.; Lavecchia, G.; Brozzetti, F. Integrating Post-Processing Kinematic (PPK)–Structure-from-Motion (SfM) with Unmanned Aerial Vehicle (UAV) Photogrammetry and Digital Field Mapping for Structural Geological Analysis. ISPRS Int. J. Geoinf. 2022, 11, 437. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef]
- Diercks, M.-L.; Grützner, C.; Welte, J.; Ustaszewski, K. Challenges of Geomorphologic Analysis of Active Tectonics in a Slowly Deforming Karst Landscape (W Slovenia and NE Italy). Geomorphology 2023, 440, 108894. [Google Scholar] [CrossRef]
- Jamšek Rupnik, P.; Benedetti, L.; Preusser, F.; Bavec, M.; Vrabec, M. Geomorphic Evidence of Recent Activity along the Vodice Thrust Fault in the Ljubljana Basin (Slovenia)—A Preliminary Study. Ann. Geophys. 2013, 56, S0680. [Google Scholar] [CrossRef]
- Bull, W. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology; Blackwell Publishing: Malden, MA, USA; Oxford, UK, 2007. [Google Scholar]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology; Blackwell Science: Malden, MA, USA, 2001. [Google Scholar]
- McCalpin, J. Paleoseismology. In International Geophysics; Academic Press; Elsevier: Burlington, MA, USA, 2009; Volume 95, pp. 1–615. [Google Scholar]
- Grad, K.; Ferjančič, L. Osnovna Geološka Karta SFRJ, List Kranj, 1:100.000. Basic Geological Map of SFR Yugoslavia, Sheet Kranj; Zvezni Geološki Zavod: Beograd, Serbia, 1974. [Google Scholar]
- Buser, S.; Cajhen, J. Osnovna Geološka Karta SFRJ, List Celovec (Klagenfurt), 1:100.000. Basic Geological Map of SFR Yugoslavia, Sheet Celovec (Klagenfurt); Zvezni Geološki Zavod: Beograd, Serbia, 1978. [Google Scholar]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent Developments in the Direct-Current Geoelectrical Imaging Method. J. Appl. Geophy. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Suzuki, K.; Toda, S.; Kusunoki, K.; Fujimitsu, Y.; Mogi, T.; Jomori, A. Case Studies of Electrical and Electromagnetic Methods Applied to Mapping Active Faults beneath the Thick Quaternary. Dev. Geotech. Eng. 2000, 84, 29–45. [Google Scholar] [CrossRef]
- Caputo, R.; Piscitelli, S.; Oliveto, A.; Rizzo, E.; Lepenna, V. The Use of Electrical Resistivity Tomographies in Active Tectonics: Examples from the Tyrnavos Basin, Greece. J. Geodyn. 2003, 36, 19–35. [Google Scholar] [CrossRef]
- Rizzo, E.; Colella, A.; Lapenna, V.; Piscitelli, S. High-Resolution Images of the Fault-Controlled High Agri Valley Basin (Southern Italy) with Deep and Shallow Electrical Resistivity Tomographies. Phys. Chem. Earth 2004, 29, 321–327. [Google Scholar] [CrossRef]
- Chwatal, W.; Decker, K.; Roch, K.-H. Mapping of Active Capable Faults by High-Resolution Geo- Physical Methods: Examples from the Central Vienna Basin. Austrian J. Earth Sci. 2005, 97, 52–59. [Google Scholar]
- Gélis, C.; Revil, A.; Cushing, M.E.; Jougnot, D.; Lemeille, F.; Cabrera, J.; de Hoyos, A.; Rocher, M. Potential of Electrical Resistivity Tomography to Detect Fault Zones in Limestone and Argillaceous Formations in the Experimental Platform of Tournemire, France. Pure Appl. Geophys. 2010, 167, 1405–1418. [Google Scholar] [CrossRef]
- Drahor, M.G.; Berge, M.A. Integrated Geophysical Investigations in a Fault Zone Located on Southwestern Part of İzmir City, Western Anatolia, Turkey. J. Appl. Geophy. 2017, 136, 114–133. [Google Scholar] [CrossRef]
- Mojica, A.; Pérez, T.; Toral, J.; Miranda, R.; Franceschi, P.; Calderón, C.; Vergara, F. Shallow Electrical Resistivity Imaging of the Limón Fault, Chagres River Watershed, Panama Canal. J. Appl. Geophy. 2017, 138, 135–142. [Google Scholar] [CrossRef]
- Woźniak, T.; Bania, G. Analysis of the Tectonic and Sedimentary Features of the Southern Margin of the Krzeszowice Graben in Southern Poland Based on an Integrated Geoelectrical and Geological Studies. J. Appl. Geophy. 2019, 165, 60–76. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, G.; Qi, Y.; Zhou, Y.; Zhao, X.; Ge, K. Application of Combined Electrical Resistivity Tomography and Seismic Reflection Method to Explore Hidden Active Faults in Pingwu, Sichuan, China. Open Geosci. 2020, 12, 174–189. [Google Scholar] [CrossRef]
- Henaish, A.; Attwa, M.; Zamzam, S. Integrated Structural, Geophysical and Remote Sensing Data for Characterizing Extensional Linked Fault Systems and Related Land Deformation Hazards at Cairo-Suez District, Egypt. Eng. Geol. 2023, 314, 106999. [Google Scholar] [CrossRef]
- Berge, M.A. Electrical Resistivity Tomography Investigations on a Paleoseismological Trenching Study. J. Appl. Geophy. 2014, 109, 162–174. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef]
- Loke, M.H. RES2DINVx64 Ver. 4.04 with Multi-Core And 64-Bit Support, Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Geotomo Softw. Malays. 2017, 137. Available online: https://landviser.com/wp-content/uploads/2018/02/Res2dinvx64.pdf (accessed on 19 February 2024).
- Loke, M.H.; Acworth, I.; Dahlin, T. A Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Pauselli, C.; Federico, C.; Frigeri, A.; Orosei, R.; Barchi, M.R.; Basile, G. Ground Penetrating Radar Investigations to Study Active Faults in the Norcia Basin (Central Italy). J. Appl. Geophy. 2010, 72, 39–45. [Google Scholar] [CrossRef]
- Bermejo, L.; Ortega, A.I.; Parés, J.M.; Campaña, I.; Bermúdez de Castro, J.M.; Carbonell, E.; Conyers, L.B. Karst Features Interpretation Using Ground-Penetrating Radar: A Case Study from the Sierra de Atapuerca, Spain. Geomorphology 2020, 367, 107311. [Google Scholar] [CrossRef]
- Lissak, C.; Maquaire, O.; Malet, J.-P.; Lavigne, F.; Virmoux, C.; Gomez, C.; Davidson, R. Ground-Penetrating Radar Observations for Estimating the Vertical Displacement of Rotational Landslides. Nat. Hazards Earth Syst. Sci. 2015, 15, 1399–1406. [Google Scholar] [CrossRef]
- Neal, A. Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Mahmoudzadeh, M.R.; Francés, A.P.; Lubczynski, M.; Lambot, S. Using Ground Penetrating Radar to Investigate the Water Table Depth in Weathered Granites—Sardon Case Study, Spain. J. Appl. Geophy. 2012, 79, 17–26. [Google Scholar] [CrossRef]
- Ercoli, M.; Cirillo, D.; Pauselli, C.; Jol, H.M.; Brozzetti, F. Ground-Penetrating Radar Signature of Quaternary Faulting: A Study from the Mt. Pollino Region, Southern Apennines, Italy. Solid Earth 2021, 12, 2573–2596. [Google Scholar] [CrossRef]
- McClymont, A.F.; Villamor, P.; Green, A.G. Fault Displacement Accumulation and Slip Rate Variability within the Taupo Rift (New Zealand) Based on Trench and 3-D Ground-Penetrating Radar Data. Tectonics 2009, 28, TC4005. [Google Scholar] [CrossRef]
- McClymont, A.F.; Green, A.G.; Villamor, P.; Horstmeyer, H.; Grass, C.; Nobes, D.C. Characterization of the Shallow Structures of Active Fault Zones Using 3-D Ground-Penetrating Radar Data. J. Geophys. Res. Solid Earth 2008, 113, B10315. [Google Scholar] [CrossRef]
- Amos, C.B.; Burbank, D.W.; Nobes, D.C.; Read, S.A.L. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand. J. Geophys. Res. Solid Earth 2007, 112, B03S11. [Google Scholar] [CrossRef]
- Gross, R.; Green, A.G.; Horstmeyer, H.; Begg, J.H. Location and Geometry of the Wellington Fault (New Zealand) Defined by Detailed Three-Dimensional Georadar Data. J. Geophys. Res. Solid Earth 2004, 109, 5401. [Google Scholar] [CrossRef]
- Patria, A.; Kimura, H.; Kitade, Y.; Tsutsumi, H. Right-Lateral Offset Associated with the Most Recent Earthquake on the Ikeda Fault of the Median Tectonic Line, Southwest Japan, Revealed by Ground-Penetrating Radar Profiling. Prog. Earth Planet Sci. 2022, 9, 8. [Google Scholar] [CrossRef]
- Ishiyama, T.; Mueller, K.; Sato, H.; Togo, M. Coseismic Fault-Related Fold Model, Growth Structure, and the Historic Multisegment Blind Thrust Earthquake on the Basement-Involved Yoro Thrust, Central Japan. J. Geophys. Res. Solid Earth 2007, 112, B03S07. [Google Scholar] [CrossRef]
- Beidinger, A.; Decker, K.; Roch, K.H. The Lassee Segment of the Vienna Basin Fault System as a Potential Source of the Earthquake of Carnuntum in the Fourth Century a.d. Int. J. Earth Sci. 2011, 100, 1315–1329. [Google Scholar] [CrossRef]
- Dentith, M.; O’Neill, A.; Clark, D. Ground Penetrating Radar as a Means of Studying Palaeofault Scarps in a Deeply Weathered Terrain, Southwestern Western Australia. J. Appl. Geophy. 2010, 72, 92–101. [Google Scholar] [CrossRef]
- Salvi, S.; Cinti, F.R.; Colini, L.; D’Addezio, G.; Doumaz, F.; Pettinelli, E. Investigation of the Active Celano-L’Aquila Fault System, Abruzzi (Central Apennines, Italy) with Combined Ground-Penetrating Radar and Palaeoseismic Trenching. Geophys. J. Int. 2003, 155, 805–818. [Google Scholar] [CrossRef]
- Malik, J.N.; Sahoo, A.K.; Shah, A.A.; Shinde, D.P.; Juyal, N.; Singhvi, A.K. Paleoseismic Evidence from Trench Investigation along Hajipur Fault, Himalayan Frontal Thrust, NW Himalaya: Implications of the Faulting Pattern on Landscape Evolution and Seismic Hazard. J. Struct. Geol. 2010, 32, 350–361. [Google Scholar] [CrossRef]
- McGeehin, J.; Burr, G.S.; Juli, A.J.T.; Reines, D.; Gosse, J.; Davis, P.T.; Muhs, D.; Southon, J.R. Stepped-Combustion 14C Dating of Sediment: A Comparison with Established Techniques. Radiocarbon 2001, 43, 255–261. [Google Scholar] [CrossRef]
- Strunk, A.; Olsen, J.; Sanei, H.; Rudra, A.; Larsen, N.K. Improving the Reliability of Bulk Sediment Radiocarbon Dating. Quat. Sci. Rev. 2020, 242, 106442. [Google Scholar] [CrossRef]
- Olsen, L.; Van Der Borg, K.; Bergstrøm, B.; Sveian, H.; Lauritzen, S.-E.; Hansen, G. AMS Radiocarbon Dating of Glacigenic Sediments with Low Organic Carbon Content—An important Tool for Reconstructing the History of Glacial Variations in Norway. Nor. Geol. Tidsskr. 2001, 81, 59–92. [Google Scholar]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal KBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Aitken, M.J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Oxford University Press: Oxford, UK, 1998; ISBN 0198540922. [Google Scholar]
- Murray, A.S.; Wintle, A.G. Luminescence Dating of Quartz Using an Improved Single-Aliquot Regenerative-Dose Protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Reimann, T.; Tsukamoto, S. Dating the Recent Past (<500 Years) by Post-IR IRSL Feldspar—Examples from the North Sea and Baltic Sea Coast. Quat. Geochronol. 2012, 10, 180–187. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The Single Aliquot Regenerative Dose Protocol: Potential for Improvements in Reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Auclair, M.; Lamothe, M.; Huot, S. Measurement of Anomalous Fading for Feldspar IRSL Using SAR. Radiat. Meas. 2003, 37, 487–492. [Google Scholar] [CrossRef]
- Huntley, D.J.; Lamothe, M. Ubiquity of Anomalous Fading in K-Feldspars and the Measurement and Correction for It in Optical Dating. Can. J. Earth Sci. 2001, 38, 1093–1106. [Google Scholar] [CrossRef]
- Liritzis, I.; Stamoulis, K.; Papachristodoulou, C.; Ioannides, K. A Re-Evaluation of Radiation Dose-Rate Conversion Factors. Mediterr. Archaeol. Archaeom. 2013, 13, 1–15. [Google Scholar]
- Pavich, M.J.; Vidic, N.J. Application of Paleomagnetic and 10Be Analyses to Chronostratigraphy of Alpine Glacio-Fluvial Terraces, Sava River Valley, Slovenia. In Climate Change in Continental Isotopic Records (Geophysical Monograph); AGU: Washington, DC, USA, 1993; Volume 78, pp. 263–275. [Google Scholar]
- Vidic, N.J.; Lobnik, F. Rates of Soil Development of the Chronosequence in the Ljubljana Basin, Slovenia. Geoderma 1997, 76, 35–64. [Google Scholar] [CrossRef]
- Čeru, T.; Šegina, E.; Gosar, A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sens. 2017, 9, 1213. [Google Scholar] [CrossRef]
- Mencin Gale, E.; Jamšek Rupnik, P.; Trajanova, M.; Bavec, M.; Anselmetti, F.S.; Šmuc, A. Morphostratigraphy and Provenance of Plio-Pleistocene Terraces in the South-Eastern Alpine Foreland: The Mislinja and Upper Savinja Valleys, Northern Slovenia. J. Quat. Sci. 2019, 34, 633–649. [Google Scholar] [CrossRef]
- Mencin Gale, E.; Jamšek Rupnik, P.; Trajanova, M.; Gale, L.; Bavec, M.; Anselmetti, F.S.; Šmuc, A. Provenance and Morphostratigraphy of the Pliocene-Quaternary Sediments in the Celje and Drava-Ptuj Basins (Eastern Slovenia). Geologija 2019, 62, 189–218. [Google Scholar] [CrossRef]
- Mihevc, A.; Bavec, M.; Häuselmann, P.; Fiebig, M. Dating of the Udin Boršt Conglomerate Terrace and Implication for Tectonic Uplift in the Northern Part of the Ljubljana Basin (Slovenia). Acta Carsologica 2015, 44, 169–176. [Google Scholar] [CrossRef]
- Verbič, T. Quaternary Stratigraphy and Neotectonics of the Eastern Krško Basin. Part 1: Stratigraphy. Razpr. Diss. 2004, 45, 171–225. [Google Scholar]
- Mencin Gale, E.; Jamšek Rupnik, P.; Akçar, N.; Christl, M.; Vockenhuber, C.; Anselmetti, F.S.; Šmuc, A. The Onset of Plio-Early Pleistocene Fluvial Aggradation in the Southeastern Alpine Foreland (Velenje Basin, Slovenia) and Its Paleoenvironmental Implications. Preprint 2023. [Google Scholar] [CrossRef]
- Broglio Loriga, C.; Masetti, D.C.; Neri, C. La Formazione Di Werfen (Scitico) Delle Dolomite Occidentali: Sedimentologia e Biostratigrafia. Riv. Ital. Paleontol. Stratigr. 1983, 88, 501–598. [Google Scholar]
- Davies, B.J. Dating Glacial Landforms II: Radiometric Techniques. In Treatise in Geomorphology, 2nd ed.; Cryospheric Geomorphology; Haritashya, U., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 249–280. [Google Scholar]
- Murray, A.S.; Thomsen, K.J.; Masuda, N.; Buylaert, J.P.; Jain, M. Identifying Well-Bleached Quartz Using the Different Bleaching Rates of Quartz and Feldspar Luminescence Signals. Radiat. Meas. 2012, 47, 688–695. [Google Scholar] [CrossRef]
- Colarossi, D.; Duller, G.A.T.; Roberts, H.M.; Tooth, S.; Lyons, R. Comparison of Paired Quartz OSL and Feldspar Post-IR IRSL Dose Distributions in Poorly Bleached Fluvial Sediments from South Africa. Quat. Geochronol. 2015, 30, 233–238. [Google Scholar] [CrossRef]
- Popit, T.; Rožič, B.; Šmuc, A.; Novak, A.; Verbovšek, T. Using a Lidar-Based Height Variability Method for Recognizing and Analyzing Fault Displacement and Related Fossil Mass Movement in the Vipava Valley, SW Slovenia. Remote Sens. 2022, 14, 2016. [Google Scholar] [CrossRef]
- Novak, A.; Oštir, K. Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models. Remote Sens. 2021, 13, 4211. [Google Scholar] [CrossRef]
- Peternel, T.; Janža, M.; Šegina, E.; Bezak, N.; Maček, M. Recognition of Landslide Triggering Mechanisms and Dynamics Using GNSS, UAV Photogrammetry and In Situ Monitoring Data. Remote Sens. 2022, 14, 3277. [Google Scholar] [CrossRef]
- Nurminen, F.; Boncio, P.; Visini, F.; Pace, B.; Valentini, A.; Baize, S.; Scotti, O. Probability of Occurrence and Displacement Regression of Distributed Surface Rupturing for Reverse Earthquakes. Front. Earth Sci. 2020, 8, 581605. [Google Scholar] [CrossRef]
- Ferrario, M.F.; Livio, F. Characterizing the Distributed Faulting During the 30 October 2016, Central Italy Earthquake: A Reference for Fault Displacement Hazard Assessment. Tectonics 2018, 37, 1256–1273. [Google Scholar] [CrossRef]
- Zechar, J.D.; Frankel, K.L. Incorporating and Reporting Uncertainties in Fault Slip Rates. J. Geophys. Res. Solid Earth 2009, 114, 12407. [Google Scholar] [CrossRef]
- Friedrich, A.M.; Wernicke, B.P.; Niemi, N.A.; Bennett, R.A.; Davis, J.L. Comparison of Geodetic and Geologic Data from the Wasatch Region, Utah, and Implications for the Spectral Character of Earth Deformation at Periods of 10 to 10 Million Years. J. Geophys. Re.s Solid Earth 2003, 108, 2199. [Google Scholar] [CrossRef]
- Mouslopoulou, V.; Walsh, J.J.; Nicol, A. Fault Displacement Rates on a Range of Timescales. Earth Planet Sci. Lett. 2009, 278, 186–197. [Google Scholar] [CrossRef]
- Cowie, P.A.; Roberts, G.P.; Bull, J.M.; Visini, F. Relationships between Fault Geometry, Slip Rate Variability and Earthquake Recurrence in Extensional Settings. Geophys. J. Int. 2012, 189, 143–160. [Google Scholar] [CrossRef]
- Styron, R. The Impact of Earthquake Cycle Variability on Neotectonic and Paleoseismic Slip Rate Estimates. Solid Earth 2019, 10, 15–25. [Google Scholar] [CrossRef]
- Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D. Fault Displacement Hazard for Strike-Slip Faults. Bull. Seismol. Soc. Am. 2011, 101, 805–825. [Google Scholar] [CrossRef]
Lab Code | Sample ID | 14C Age [yr BP] | ± | δ13C AMS [‰] | Calibrated 14C Age [cal yr BP] | ± | Carbon Content [%] | Material |
---|---|---|---|---|---|---|---|---|
44643 | UK19-5 | 2438 | 25 | −23.6 | 2528 | 171 | 0.7 | Bulk sediment |
44644 | UK19-6 | 2136 | 24 | −27.0 | 2149 | 147 | 0.6 | Bulk sediment |
Lab Code | Sample ID | Material | U [ppm] | ± [ppm] | Th [ppm] | ± [ppm] | K [%] | ± [%] | Cosmic Dose Rate [Gy/ka] | ± [Gy/ka] | Total Dose Rate [Gy/ka] | ± [Gy/ka] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4160 | UK19-7 | Fine-grained quartz | 3.01 | 0.15 | 15.39 | 0.77 | 2.79 | 0.14 | 0.21 | 0.02 | 4.74 | 0.24 |
4160 | UK19-7 | Coarse-grained K-feldspar | 3.01 | 0.15 | 15.39 | 0.77 | 2.79 | 0.14 | 0.21 | 0.02 | 4.86 | 0.36 |
Lab Code | Sample ID | Mean De [Gy] | ± [Gy] | MAM De [Gy] | ± [Gy] | Mean Age [ka] | ± [ka] | MAM Age | ± [ka] | Fading Corrected MAM Age [ka] | ± [ka] |
---|---|---|---|---|---|---|---|---|---|---|---|
4160 | UK19-7 | 130 | 4 | 27.4 | 1.6 | ||||||
4160 | UK19-7 | 307 | 31 | 124 | 22 | 63.1 | 7.9 | 25.5 | 4.9 | 39.3 | 8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamšek Rupnik, P.; Atanackov, J.; Horn, B.; Mušič, B.; Zajc, M.; Grützner, C.; Ustaszewski, K.; Tsukamoto, S.; Novak, M.; Milanič, B.; et al. Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia). Remote Sens. 2024, 16, 1490. https://doi.org/10.3390/rs16091490
Jamšek Rupnik P, Atanackov J, Horn B, Mušič B, Zajc M, Grützner C, Ustaszewski K, Tsukamoto S, Novak M, Milanič B, et al. Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia). Remote Sensing. 2024; 16(9):1490. https://doi.org/10.3390/rs16091490
Chicago/Turabian StyleJamšek Rupnik, Petra, Jure Atanackov, Barbara Horn, Branko Mušič, Marjana Zajc, Christoph Grützner, Kamil Ustaszewski, Sumiko Tsukamoto, Matevž Novak, Blaž Milanič, and et al. 2024. "Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia)" Remote Sensing 16, no. 9: 1490. https://doi.org/10.3390/rs16091490
APA StyleJamšek Rupnik, P., Atanackov, J., Horn, B., Mušič, B., Zajc, M., Grützner, C., Ustaszewski, K., Tsukamoto, S., Novak, M., Milanič, B., Markelj, A., Ivančič, K., Novak, A., Jež, J., Žebre, M., Bavec, M., & Vrabec, M. (2024). Revealing Subtle Active Tectonic Deformation: Integrating Lidar, Photogrammetry, Field Mapping, and Geophysical Surveys to Assess the Late Quaternary Activity of the Sava Fault (Southern Alps, Slovenia). Remote Sensing, 16(9), 1490. https://doi.org/10.3390/rs16091490