Simulation and Forecast of Coastal Ecosystem Services in Jiaodong Peninsula Based on SSP-RCP Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sources of Data
2.3. Method
2.3.1. Data Preprocessing
Assimilation of Meteorological, Natural, and Socio-Economic Data
Land Use Reclassification Based on Non-Homogeneous Data Voting
2.3.2. Climate Change Prediction
Description of Climate Scenarios
Potential Evapotranspiration (PET) Inversion
Bias Correction Method
2.3.3. LULC Simulation under SSP-RCP Scenarios
Estimation of RF-based Development Potential
CA-Markov Model Prediction
Scenario Settings
Model Validation and Accuracy
2.3.4. Assessment of Key ESs
2.3.5. Analysis of Drivers of Future ESs
3. Results
3.1. Climate Changes from 2000 to 2050
3.2. The Spatiotemporal Changes of LULC from 2000 to 2050
3.3. The Spatiotemporal Changes of Historical ESs
- (1)
- Water yield (WY)The spatial distribution of WY is mainly influenced by LULC. High WY values are primarily concentrated in built-up areas, while low values are observed in inland water bodies, coastal saltwater areas, and forests. The interannual variation in WY is consistent with changes in precipitation, with the highest WY observed in 2020.
- (2)
- Carbon storage (CS)High CS is concentrated in mountainous and hilly areas, where forests and grasslands act as major carbon sinks. Inland water bodies exhibit the lowest carbon sequestration. CS shows a gradual decline, with an annual variation rate of −0.32 t/hm2. By 2020, CS had decreased by 6.69%.
- (3)
- Soil retention (SR)High SR is primarily located in mountainous and hilly areas. The steep terrain in these regions increases the susceptibility of soil to erosion. However, these areas are typically covered by woods and grasslands, which offer effective vegetation cover that intercepts and retains soil, thereby contributing to high SR. The interannual variation in soil retention is similar to that of WY and is consistent with changes in precipitation.
- (4)
- Habitat quality (HQ)High HQ is mainly located in hilly and mountainous places due to the existence of vast woods and grasslands, which provide suitable habitats for various species. Low HQ is found in inland built-up areas, transportation regions, and coastal saltwater zones. From 2000 to 2020, HQ on the Jiaodong Peninsula showed a declining trend, with an overall decrease of 9.13% by 2020.
3.4. Future ESs under SSP-RCP Scenarios
- (1)
- WY under SSP-RCP ScenariosUnder the SSP1-2.6 and SSP2-4.5 scenarios, WY in 2050 is expected to be higher than in 2030 but lower than in 2020. The lowest WY in 2050 occurs under the SSP5-8.5 scenario, at only 56.79% of the SSP1-2.6 value. The spatial distribution of WY remains consistent with historical trends.
- (2)
- CS under SSP-RCP ScenariosFuture CS shows a declining trend across all scenarios, and the differences in CS between scenarios are small. by 2050, CS capacity follows the following order: SSP1-2.6 > SSP2-4.5 > SSP5-8.5, with CS under the SSP5-8.5 scenario being 8.59% lower than in 2020. The spatial distribution of CS remains consistent with historical trends.
- (3)
- SR under SSP-RCP ScenariosIn future scenarios, SR shows a decrease compared to 2020 but an increase relative to the 2000–2020 average (9.1 t/hm2). By 2050, SR is highest under the SSP5-8.5 scenario. The spatial distribution of SR remains consistent with historical trends.
- (4)
- HQ under SSP-RCP ScenariosHQ is projected to show a continuous decline in 2030 and 2050 across all scenarios. The greatest decline in HQ by 2050 is under SSP5-8.5, with a decrease of 9.13% compared to 2020, posing a significant threat to local biodiversity. HQ’s spatial distribution follows historical patterns, with higher concentrations in hilly regions.
3.5. Analysis of Drivers of ESs under Future SSP-RCP Scenarios
3.5.1. Drivers of Future WY
3.5.2. Drivers of Future CS
3.5.3. Drivers of Future SR
3.5.4. Drivers of Future HQ
4. Discussion
4.1. Climate Changes and Future ES Protection
4.2. Human Activities and Future ES Protection
4.3. Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Details of Materials and Methods
Appendix A.1. Data Preprocessing
Visual Classification Results | Reclassification Results | ||||||
---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Built-Up | Inland Water | Saltwater | Unused | |
Cropland | 277 | 2 | 1 | 0 | 1 | 1 | 1 |
Forest | 3 | 35 | 1 | 1 | 1 | 1 | 1 |
Grassland | 1 | 1 | 12 | 1 | 0 | 0 | 0 |
Built-up | 0 | 0 | 3 | 28 | 0 | 0 | 1 |
Inland water | 1 | 0 | 0 | 0 | 16 | 1 | 0 |
Saltwater | 1 | 0 | 0 | 0 | 2 | 19 | 0 |
Unused | 1 | 0 | 0 | 0 | 0 | 0 | 8 |
Appendix A.2. PET Inversion
Appendix A.3. Inputs and Settings for the PLUS Model
Scenarios | Land Transition Matrices | Neighborhood Weight | |||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Built-Up | Inland Water | Saltwater | Unused | |||
SSP1-2.6 | Cropland | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.9 |
Forest | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.16 | |
Grassland | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.07 | |
Built-up | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.76 | |
Inland water | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0.2 | |
Saltwater | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.21 | |
Unused | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
SSP2-4.5 | Cropland | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.9 |
Forest | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.16 | |
Grassland | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.07 | |
Built-up | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.76 | |
Inland water | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.2 | |
Saltwater | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.21 | |
Unused | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | |
SSP5-8.5 | Cropland | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0.9 |
Forest | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.16 | |
Grassland | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.07 | |
Built-up | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0.76 | |
Inland water | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0.2 | |
Saltwater | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0.21 | |
Unused | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Appendix A.4. Inputs and Settings for the InVEST Model
Appendix A.4.1. Annual Water Yield (WY)
Appendix A.4.2. Carbon Storage (CS)
Appendix A.4.3. Soil Retention (SR)
Appendix A.4.4. Habitat Quality (HQ)
LULC Type | (mm) | (kg/hm2) | (kg/hm2) | (kg/hm2) | (kg/hm2) | P | C | |
---|---|---|---|---|---|---|---|---|
Cropland | 0.54 | 3500 | 7.74 | 5.26 | 95.4 | 1.32 | 0.22 | 0.4 |
Forest | 0.83 | 5200 | 37.2 | 7.3 | 107.4 | 2.8 | 0.06 | 1 |
Grassland | 0.54 | 2500 | 14.29 | 13.2 | 85.7 | 1.4 | 0.07 | 1 |
Built-up | 0.25 | 100 | 1.81 | 1 | 14 | 0 | 0.2 | 0 |
Inland water | 1.00 | 100 | 1.5 | 0.5 | 25.5 | 1.17 | 0 | 0 |
Saltwater | 1.00 | 100 | 2 | 2.5 | 20 | 0.5 | 0 | 0 |
Unused | 0.42 | 100 | 1.22 | 1.95 | 20.94 | 0.91 | 1 | 1 |
Threat Source | Decay Type | ||
---|---|---|---|
Built-up | 1 | 9 | Exponential |
Cropland | 0.4 | 3 | Linear |
Saltwater | 0.1 | 1 | Linear |
Unused | 0.8 | 1 | Exponential |
Road | 0.6 | 0.5 | Linear |
Railway | 0.6 | 0.5 | Linear |
LULC Type | |||||||
---|---|---|---|---|---|---|---|
Built-Up | Cropland | Saltwater | Unused | Road | Railway | ||
Cropland | 0.7 | 0.5 | 0 | 0.1 | 0.2 | 0.5 | 0.4 |
Forest | 1 | 1 | 0.7 | 0 | 0.6 | 0.7 | 0.5 |
Grassland | 1 | 0.7 | 0.6 | 0.1 | 0.4 | 0.4 | 0.3 |
Built-up | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inland water | 0.9 | 0.6 | 0.4 | 0 | 0.2 | 0.4 | 0.2 |
Saltwater | 0.8 | 0.6 | 0.4 | 0 | 0.3 | 0.3 | 0.2 |
Unused | 0.1 | 0.6 | 0.2 | 0 | 0 | 0.3 | 0.1 |
Appendix A.5. Fit Indices of SEM Models
Scenario | ES | CFI | GFI | AGFI | NFI | TLI | RMSEA | AIC | BIC |
---|---|---|---|---|---|---|---|---|---|
SSP1-2.6 | WY | 0.97 | 0.96 | 0.92 | 0.96 | 0.93 | 0.10 | 41.70 | 156.90 |
CS | 0.98 | 0.97 | 0.95 | 0.97 | 0.95 | 0.11 | 33.74 | 126.99 | |
SR | 0.92 | 0.92 | 0.80 | 0.92 | 0.81 | 0.22 | 35.03 | 133.77 | |
HQ | 0.98 | 0.98 | 0.94 | 0.98 | 0.94 | 0.11 | 35.76 | 134.50 | |
SSP2-4.5 | WY | 0.95 | 0.95 | 0.89 | 0.95 | 0.90 | 0.12 | 41.58 | 156.80 |
CS | 0.98 | 0.97 | 0.94 | 0.97 | 0.95 | 0.11 | 33.72 | 127.00 | |
SR | 0.92 | 0.92 | 0.80 | 0.92 | 0.80 | 0.22 | 35.02 | 133.78 | |
HQ | 0.98 | 0.98 | 0.94 | 0.98 | 0.94 | 0.11 | 35.74 | 134.50 | |
SSP5-8.5 | WY | 0.95 | 0.95 | 0.90 | 0.95 | 0.90 | 0.11 | 41.63 | 156.90 |
CS | 0.98 | 0.97 | 0.94 | 0.97 | 0.95 | 0.11 | 33.72 | 127.03 | |
SR | 0.90 | 0.90 | 0.75 | 0.90 | 0.75 | 0.25 | 34.71 | 133.51 | |
HQ | 0.98 | 0.97 | 0.94 | 0.97 | 0.94 | 0.11 | 35.73 | 134.52 |
References
- Ross, S.R.J.; Arnoldi, J.F.; Loreau, M.; White, C.D.; Stout, J.C.; Jackson, A.L.; Donohue, I. Universal scaling of robustness of ecosystem services to species loss. Nat. Commun. 2021, 12, 5167. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.; Lodge, D.; Alder, J.; Cumming, G.S.; Keymer, J.; McGlade, J.; Mooney, H.; Rusak, J.A.; Sala, O.; Wolters, V.; et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 2006, 87, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.G.; Sapes, G.; Pivovaroff, A.; Adams, H.D.; Allen, C.D.; Anderegg, W.R.; Arend, M.; Breshears, D.D.; Brodribb, T.; Choat, B.; et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 2022, 3, 294–308. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Hou, S.; Liu, T.; Li, X.; Li, Y.; Du, Z.; Li, C.; Wu, H.; Gao, G.; et al. Unraveling carbon stock dynamics and their determinants in China’s Loess Plateau over the past 40 years. Ecol. Indic. 2024, 159, 111760. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Change Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Edo, G.I.; Itoje-akpokiniovo, L.O.; Obasohan, P.; Ikpekoro, V.O.; Samuel, P.O.; Jikah, A.N.; Nosu, L.C.; Ekokotu, H.A.; Ugbune, U.; Oghroro, E.E.A.; et al. Impact of environmental pollution from human activities on water, air quality and climate change. Ecol. Front. 2024, in press. [CrossRef]
- Yan, J.; Zhu, J.; Zhao, S.; Su, F. Coastal wetland degradation and ecosystem service value change in the Yellow River Delta, China. Glob. Ecol. Conserv. 2023, 44, e02501. [Google Scholar] [CrossRef]
- Watson, C.S.; Kargel, J.S.; Regmi, D.; Rupper, S.; Maurer, J.M.; Karki, A. Shrinkage of Nepal’s second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx. Remote Sens. 2019, 11, 444. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Yao, R.; Luo, M.; Li, X. Identifying the dominant driving factors of heat waves in the North China Plain. Atmos. Res. 2021, 252, 105458. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Taboada, A.; García-Llamas, P.; Fernández-Guisuraga, J.M.; Calvo, L. Wildfires impact on ecosystem service delivery in fire-prone maritime pine-dominated forests. Ecosyst. Serv. 2021, 50, 101334. [Google Scholar] [CrossRef]
- Perkins, K.M.; Munguia, N.; Ellenbecker, M.; Moure-Eraso, R.; Velazquez, L. COVID-19 pandemic lessons to facilitate future engagement in the global climate crisis. J. Clean. Prod. 2021, 290, 125178. [Google Scholar] [CrossRef]
- Grima, N.; Corcoran, W.; Hill-James, C.; Langton, B.; Sommer, H.; Fisher, B. The importance of urban natural areas and urban ecosystem services during the COVID-19 pandemic. PLoS ONE 2020, 15, e0243344. [Google Scholar] [CrossRef]
- Dong, J.Y.; Guo, M.; Wang, X.; Yang, o.; Zhang, Y.H.; Zhang, P.D. Dramatic loss of seagrass Zostera marina L. suitable habitat under projected climate change in coastal areas of the Bohai Sea and Shandong peninsula, China. J. Exp. Mar. Biol. Ecol. 2023, 565, 151915. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, S.; Jiang, H.; Zhang, T. Ecosystem vulnerability to extreme climate in coastal areas of China. Environ. Res. Lett. 2023, 18, 124028. [Google Scholar]
- Xia, J.; Yang, X.Y.; Liu, J.; Wang, M.; Li, J. Dominant change pattern of extreme precipitation and its potential causes in Shandong Province, China. Sci. Rep. 2022, 12, 858. [Google Scholar]
- Guo, W.; Wang, R. Spatiotemporal Evolution of Ecological Environment Quality and Driving Factors in Jiaodong Peninsula, China. Sustainability 2024, 16, 3676. [Google Scholar] [CrossRef]
- Yuan, Y.; Song, D.; Wu, W.; Liang, S.; Wang, Y.; Ren, Z. The impact of anthropogenic activities on marine environment in Jiaozhou Bay, Qingdao, China: A review and a case study. Reg. Stud. Mar. Sci. 2016, 8, 287–296. [Google Scholar] [CrossRef]
- Ai, B.; Tian, Y.; Wang, P.; Gan, Y.; Luo, F.; Shi, Q. Vulnerability analysis of coastal zone based on InVEST model in Jiaozhou Bay, China. Sustainability 2022, 14, 6913. [Google Scholar] [CrossRef]
- Mu, H.; Wang, Y.; Zhang, H.; Guo, F.; Li, A.; Zhang, S.; Liu, S.; Liu, T. High abundance of microplastics in groundwater in Jiaodong Peninsula, China. Sci. Total Environ. 2022, 839, 156318. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhu, L.; Jiang, W.; Qin, J.; Lee, H.S. Research on the effects of soil petroleum pollution concentration on the diversity of natural plant communities along the coastline of Jiaozhou bay. Environ. Res. 2021, 197, 111127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, C.h.; Zhao, Y.c.; Wang, Q.; Zhang, Q.p. Spatial correlations of land use carbon emissions in Shandong peninsula urban agglomeration: A perspective from city level using remote sensing data. Remote Sens. 2023, 15, 1488. [Google Scholar] [CrossRef]
- Ouyang, K.; Huang, M.; Gong, D.; Zhu, D.; Lin, H.; Xiao, C.; Fan, Y.; Altan, O. A Novel Framework for Integrally Evaluating the Impacts of Climate Change and Human Activities on Water Yield Services from Both Local and Global Perspectives. Remote Sens. 2024, 16, 3008. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Z.; Lin, J.; Wang, H.; Zheng, S.; Yang, S. Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2024, 12, 298–312. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-temporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Wu, F.; Jiang, Z.; Pepin, N.; Shen, S.S. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty. Clim. Dyn. 2021, 57, 17–35. [Google Scholar]
- Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Ji, X.; Sun, Y.; Guo, W.; Zhao, C.; Li, K. Land use and habitat quality change in the Yellow River Basin: A perspective with different CMIP6-based scenarios and multiple scales. J. Environ. Manag. 2023, 345, 118729. [Google Scholar] [CrossRef]
- Guo, W.; Teng, Y.; Li, J.; Yan, Y.; Zhao, C.; Li, Y.; Li, N. A new assessment framework to forecast land use and carbon storage under different SSP-RCP scenarios in China. Sci. Total Environ. 2024, 912, 169088. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhang, D.; Su, S.; Liang, S.; Du, J.; Yu, W.; Ma, Z.; Chen, B.; Hu, W. Coastal habitat quality assessment and mapping in the terrestrial-marine continuum: Simulating effects of coastal management decisions. Ecol. Indic. 2023, 156, 111158. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Supporting Material of the Intergovernmental Panel on Climate Change, Available from the DDC of IPCC TGCIA. 2004, Volume 27. Available online: https://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (accessed on 4 January 2020).
- Zhao, F.; Xu, Z. Comparative analysis on downscaled climate scenarios for headwater catchment of Yellow River using SDS and delta methods. Acta Meteorol. Sin. 2007, 65, 653–662. [Google Scholar]
- Yan, D.; Werners, S.E.; Ludwig, F.; Huang, H.Q. Hydrological response to climate change: The Pearl River, China under different RCP scenarios. J. Hydrol. Reg. Stud. 2015, 4, 228–245. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arnould, G. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 2020, 241, 104953. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Yang, Q.; Wang, Z.; Li, Y.; Cheng, L.; Yao, B.; Lu, Q. Changes in land use and ecosystem service values of Dunhuang Oasis from 1990 to 2030. Remote Sens. 2023, 15, 564. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, o.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, o.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of hainan island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, L.; Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 2017, 12, e0172494. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Zheng, X.; Zhang, Y.; Liu, Y.; Ou, X.; Xia, C.; Liu, L. Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. Sci. Total Environ. 2024, 944, 173828. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef]
- Ureta, J.C.; Clay, L.; Motallebi, M.; Ureta, J. Quantifying the landscape’s ecological benefits—An analysis of the effect of land cover change on ecosystem services. Land 2020, 10, 21. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial least squares structural equation modeling (PLS-SEM) using R: A workbook; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–29. [Google Scholar]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Qiu, J.; Yu, D.; Huang, T. Influential paths of ecosystem services on human well-being in the context of the sustainable development goals. Sci. Total Environ. 2022, 852, 158443. [Google Scholar] [CrossRef] [PubMed]
- Koutsoyiannis, D. Clausius–Clapeyron equation and saturation vapour pressure: Simple theory reconciled with practice. Eur. J. Phys. 2012, 33, 295. [Google Scholar] [CrossRef]
- Neelin, J.D.; Martinez-Villalobos, C.; Stechmann, S.N.; Ahmed, F.; Chen, G.; Norris, J.M.; Kuo, Y.H.; Lenderink, G. Precipitation extremes and water vapor: Relationships in current climate and implications for climate change. Curr. Clim. Change Rep. 2022, 8, 17–33. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Li, Z.; Fang, G.; Chen, Y.; Duan, W.; Mukanov, Y. Agricultural water demands in Central Asia under 1.5 C and 2.0 C global warming. Agric. Water Manag. 2020, 231, 106020. [Google Scholar] [CrossRef]
- Seidenfaden, I.K.; Jensen, K.H.; Sonnenborg, T.O. Climate change impacts and uncertainty on spatiotemporal variations of drought indices for an irrigated catchment. J. Hydrol. 2021, 601, 126814. [Google Scholar]
- Xu, Y.; Xu, T. An evolving marine environment and its driving forces of algal blooms in the Southern Yellow Sea of China. Mar. Environ. Res. 2022, 178, 105635. [Google Scholar] [CrossRef]
- Wang, Y.; Du, P.; Liu, B.; Sheng, S. Vulnerability of mariculture areas to oil-spill stress in waters north of the Shandong Peninsula, China. Ecol. Indic. 2023, 148, 110107. [Google Scholar] [CrossRef]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974; p. 508. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008; Volume 10. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, O.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Number 537, Department of Agriculture, Science and Education Administration. 1978. Available online: https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf (accessed on 1 August 2024).
- Williams, J.; Renard, K.; Dyke, P. EPIC: A new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1983, 38, 381–383. [Google Scholar]
- Zhang, K.; Peng, W.; Yang, H. Soil erodibility values and their estimation in China. Acta Pedofil. Sin 2007, 44, 7–13. [Google Scholar]
- Desmet, P.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
Data Classification | Name | Data Source | Resolution |
---|---|---|---|
Satellite Images | Landsat TM/ETM/OLI | http://developers.google.com/earth-engine/datasets (accessed on 4 January 2024) Google Earth Engine platform | 30 m |
Land Use Data | Multi-period land use remote sensing monitoring dataset in China (CNLUCC) | http://www.resdc.cn (accessed on 12 May 2024) Resources and Environmental Sciences Data Center | 30 m |
Landsat-derived annual land cover product of China (CLCD) | http://zenodo.org/records/8176941 (accessed on 12 May 2024) Zenodo | 30 m | |
Climate Data | Automatic Weather Station Observation Data | Shandong Meteorological Data Center | 296 stations (Figure 1) |
National Station Observation Data | Shandong Meteorological Data Center | 9 stations (Figure 1) | |
ERA5-Land monthly averaged data | https://cds.climate.copernicus.eu/ (accessed on 20 June 2024) European Centre for Medium-Range Weather Forecasts (ECMWF) | 0.1° | |
Outputs of AOGCMs | https://esgf-node.llnl.gov/search/cmip6/ (accessed on 6 March 2024) Coupled Model Intercomparison Project (CMIP6) | 100–250 km | |
Natural and Socio-economic Data | Digital Elevation Model (DEM) | http://www.giscloud.com/ (accessed on 10 January 2024) Geospatial Data Cloud | 30 m |
River, Road, Airport, and Port Data | https://www.openstreetmap.org OpenStreetMap (accessed on 13 May 2024) | vector | |
China Soil Map-based HWSD | https://www.tpdc.ac.cn/ (accessed on 10 January 2024) Cold and Arid Regions Sciences Data Center | 1 km | |
SoilGrids 2017 AWC data | https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/e33e75c0-d9ab-46b5-a915-cb344345099c (accessed on 21 March 2024) ISRIC World Soil Information | 250 m | |
Gross Domestic Product (GDP) | http://www.resdc.cn (accessed on 10 March 2024) Resources and Environmental Sciences Data Center | 1 km | |
Population Density | https://www.worldpop.org (accessed on 10 March 2024) WorldPop | 1 km | |
Future Population and GDP | https://figshare.com (accessed on 24 March 2024) Figshare | 1 km |
Primary Type Code | Primary Type Name | Secondary Classification |
---|---|---|
1 | Cropland | Paddy field, dry field |
2 | Forest | Forest, shrubland |
3 | Grassland | Grassland |
4 | Built-up | Urban Area, transportation land, rural settlement, mining and industrial land |
5 | Inland water | River/canal, lake, reservoir, estuarine wetland, mudflat |
6 | Saltwater | Salt field, seawater aquaculture, artificial wetland, coastal wetland |
7 | Unused | Unused land, bare land |
Scenario | Socio-Economic Development Expectations | Quantity Constraints |
---|---|---|
SSP1-2.6 | Corresponding to the CMIP6 SSP1-2.6 low-emission scenario, this scenario emphasizes the protection of the ecological environment, including natural resources like forest, grassland, cropland, and water, and ensures reasonable land use planning and management. | The conversion probability of cropland, forest, and grassland to built-up areas dropped by 20%, while the probability of saltwater converting to built-up areas decreased by 30%. |
SSP2-4.5 | Corresponding to the CMIP6 SSP2-4.5 medium-emission scenario, this scenario follows historical development trends without major human intervention in land use conversion. | Future land use areas are derived based on historical LULC transition trends from 2000 to 2020. |
SSP5-8.5 | Corresponding to the CMIP6 SSP5-8.5 high-emission scenario, this scenario prioritizes urban development and increases economic land benefits. | The conversion probability of cropland, forest, grassland, and unused land to built-up areas increased by 30%, whereas the probability of built-up areas converting to inland water and saltwater decreased by 20%. |
Type | LULC | Historical | Future Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | |||||
2030 | 2050 | 2030 | 2050 | 2030 | 2050 | |||||||
Area ( km2) | Cropland | 39.75 | 38.67 | 37.78 | 36.29 | 35.23 | 33.54 | 30.85 | 33.43 | 30.70 | 33.20 | 30.49 |
Forest | 2.27 | 2.14 | 1.68 | 2.48 | 2.65 | 2.96 | 3.48 | 2.96 | 3.32 | 2.94 | 3.31 | |
Grassland | 0.30 | 0.39 | 0.68 | 0.57 | 0.66 | 0.74 | 0.79 | 0.74 | 0.79 | 0.74 | 0.78 | |
Built-up | 7.63 | 8.53 | 9.64 | 10.81 | 11.62 | 12.87 | 15.23 | 13.05 | 15.38 | 13.28 | 15.60 | |
Inland water | 0.39 | 0.58 | 0.57 | 0.35 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | |
Saltwater | 1.38 | 1.41 | 1.37 | 1.22 | 0.98 | 1.04 | 0.96 | 0.98 | 0.96 | 0.97 | 0.95 | |
Unused | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
Proportion (%) | Cropland | 76.85 | 74.76 | 73.03 | 70.16 | 68.10 | 64.85 | 59.64 | 64.62 | 59.36 | 64.18 | 58.95 |
Forest | 4.39 | 4.14 | 3.25 | 4.79 | 5.13 | 5.72 | 6.72 | 5.72 | 6.41 | 5.68 | 6.41 | |
Grassland | 0.58 | 0.75 | 1.31 | 1.10 | 1.27 | 1.43 | 1.52 | 1.43 | 1.52 | 1.42 | 1.52 | |
Built-up | 14.75 | 16.49 | 18.63 | 20.90 | 22.47 | 24.87 | 29.44 | 25.23 | 29.73 | 25.68 | 30.16 | |
Inland water | 0.75 | 1.12 | 1.10 | 0.67 | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | |
Saltwater | 2.67 | 2.73 | 2.65 | 2.35 | 1.90 | 2.01 | 1.86 | 1.89 | 1.85 | 1.88 | 1.84 | |
Unused | 0.01 | 0.00 | 0.01 | 0.01 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
ES | Historical | Future Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | ||||
2030 | 2050 | 2030 | 2050 | 2030 | 2050 | ||||||
WY (mm) | 22.35 | 76.26 | 28.28 | 2.98 | 93.67 | 26.15 | 46.35 | 21.81 | 39.97 | 27.97 | 26.32 |
CS (t/hm2) | 95.15 | 93.07 | 90.79 | 89.96 | 88.69 | 86.52 | 82.84 | 88.68 | 82.57 | 85.99 | 81.07 |
SR (t/hm2) | 5.58 | 12.73 | 7.99 | 3.59 | 15.55 | 12.20 | 11.06 | 10.32 | 14.43 | 12.59 | 15.04 |
HQ | 0.580 | 0.570 | 0.555 | 0.537 | 0.527 | 0.511 | 0.480 | 0.527 | 0.478 | 0.505 | 0.476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wang, R.; Meng, F. Simulation and Forecast of Coastal Ecosystem Services in Jiaodong Peninsula Based on SSP-RCP Scenarios. Remote Sens. 2024, 16, 3614. https://doi.org/10.3390/rs16193614
Guo W, Wang R, Meng F. Simulation and Forecast of Coastal Ecosystem Services in Jiaodong Peninsula Based on SSP-RCP Scenarios. Remote Sensing. 2024; 16(19):3614. https://doi.org/10.3390/rs16193614
Chicago/Turabian StyleGuo, Wenhui, Ranghui Wang, and Fanhui Meng. 2024. "Simulation and Forecast of Coastal Ecosystem Services in Jiaodong Peninsula Based on SSP-RCP Scenarios" Remote Sensing 16, no. 19: 3614. https://doi.org/10.3390/rs16193614
APA StyleGuo, W., Wang, R., & Meng, F. (2024). Simulation and Forecast of Coastal Ecosystem Services in Jiaodong Peninsula Based on SSP-RCP Scenarios. Remote Sensing, 16(19), 3614. https://doi.org/10.3390/rs16193614