Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data
Abstract
:1. Introduction
2. Materials
2.1. The Seismogenic Fault
2.2. GPS Data
2.3. InSAR Data
3. Methods
4. Results
5. Discussion
5.1. Implication for Seismic Hazards
5.2. Relation to Co-Seismic Landslides
6. Conclusions
- Two fault traces, constituting the northern segment of the Huya Fault, were obtained from pre-seismic satellite optical images; the findings revealed that these faults were probably active in the late Quaternary.
- InSAR observations showed that major co-seismic displacements occurred in the region northwest of the seismogenic fault. The largest horizontal displacement, recorded by the GPS station SCJZ, is up to 1.0 cm.
- Joint inversion results showed that most of the slip occurred above a depth of 15 km, dominated by left-lateral strike-slip. The peak slip at a depth of 6.8 km reached up to 1.12 m. The released moment was 5.3 × 1018 N m, equivalent to Mw 6.4 with a rigidity of 30 GPa.
- The largest potential surface rupture, derived from the slip model, occurred in the center of the seismogenic fault with strike-slip and dip-slip components of 0.4 m and 0.2 m respectively.
- The southern and northern segments of the Huya Fault are characterized by different slip mechanisms.
- For a strike-slip event, the overall incidence and severity of the co-seismic landslides show a contrary distribution to the scale of the displacement of the surface rupture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Cheng, J.; An, Y.; Fang, L.; Jiang, C.; Chen, B.; Wang, Y. Preliminary Report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, Earthquake. Seismol. Res. Lett. 2018, 89, 557–569. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active faulting and tectonics in China. J. Geophys. Res. Solid Earth 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Teng, C.; Chang, Y.; Hsu, K.; Fan, F. On the tectonic stress field in China and its relation to plate movement. Phys. Earth Planet. Inter. 1979, 18, 257–273. [Google Scholar] [CrossRef]
- Xu, X.; Yu, G.; Klinger, Y.; Tapponnier, P.; Van Der Woerd, J. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw 7.8), northern Tibetan Plateau, China. J. Geophys. Res. Solid Earth 2006, 111, B05316. [Google Scholar] [CrossRef]
- Harkins, N.; Kirby, E.; Shi, X.; Wang, E.; Burbank, D.; Chun, F. Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia. Lithosphere 2010, 2, 247–266. [Google Scholar] [CrossRef]
- Van der Woerd, J.; Ryerson, F.J.; Tapponnier, P.; Meriaux, A.S.; Gaudemer, Y.; Meyer, B.; Finkel, R.C.; Caffee, M.W.; Zhao, G.; Xu, Z. Uniform slip-rate along the Kunlun fault: Implications for seismic behaviour and large-scale tectonics. Geophys. Res. Lett. 2000, 27, 2353–2356. [Google Scholar] [CrossRef]
- Van der Woerd, J.; Ryerson, F.J.; Tapponnier, P.; Meriaux, A.S.; Gaudemer, Y.; Meyer, B.; Finkel, R.C.; Caffee, M.W.; Zhao, G.; Xu, Z. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys. J. Int. 2002, 148, 356–388. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X.; Burchfiel, B.C.; Tang, W.; Berger, G.; Sun, Z.; Chen, Z. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geol. Soc. Am. Bull. 2000, 112, 375–393. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Yeats, R.S.; Zhang, S. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet. Tectonophysics 2013, 608, 1180–1200. [Google Scholar] [CrossRef]
- Xu, C.; Wang, S.; Xu, X.; Zhang, H.; Tian, Y.; Ma, S.; Tan, X. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan M S 7.0 earthquake. Seismol. Geol. 2018, 40, 232–260. [Google Scholar]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Earth Sci. 2003, 46, 356–372. [Google Scholar] [CrossRef]
- Xie, Z.; Zheng, Y.; Yao, H.; Fang, L.; Liu, C.; Wang, M.; Shan, B.; Zhang, H.; Ren, J.; Ji, L.; et al. Preliminary analysis on the source properties and seismogenic structure of the 2017 Ms7.0 Jiuzhaigou earthquake. Sci. China Earth Sci. 2018, 61, 339–352. [Google Scholar] [CrossRef]
- Jones, L.; Han, W.; Hauksson, E.; Jin, A.; Zhang, Y.; Luo, Z. Focal mechanisms and aftershock locations of the Songpan earthquake of August 1976 in Sichuan, China. J. Geophys. Res. Solid Earth 1984, 89, 7697–7707. [Google Scholar] [CrossRef]
- Cheng, E.-L. Recent tectonic stress field and tectonic movement of the Sichuan province and its vicinity. Acta Seismol. Sin. 1981, 3, 231–241. [Google Scholar]
- Wells, D.; Coppersmith, K. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, X.; Liu, G.; Xiong, W.; Jia, Z.; Li, Y.; Long, F. Study on the coseismic slip model and Coulomb stress of the 2017 Jiuzhaigou Ms 7.0 earthquake constrained by GNSS and InSAR measurements. Chin. J. Geophys. 2018, 61, 2122–2132. [Google Scholar]
- Chen, X.; Peng, J.; Motagh, M.; Zheng, Y.; Shi, M.; Yang, H.; Jia, Q. Co-seismic deformation of the 2017 Ms 7.0 Jiuzhaigou Earthquake observed with GaoFen-3 interferometry. Int. J. Remote Sens. 2020, 41, 6618–6634. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, X.; Zhang, K.; Meng, G.; Dong, Y.; Su, X.; Zhang, L.; Li, S.; Ding, K. Source model and stress disturbance of the 2017 Jiuzhaigou Mw 6.5 earthquake constrained by InSAR and GPS measurements. Remote Sens. 2018, 10, 1400. [Google Scholar] [CrossRef]
- Ji, L.; Liu, C.; Xu, J.; Liu, L.; Long, F.; Zhang, Z. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS 7.0 earthquake in China. Chin. J. Geophys. 2017, 60, 4069–4082. [Google Scholar]
- Li, Y.; Bürgmann, R.; Zhao, B. Evidence of fault immaturity from shallow slip deficit and lack of postseismic deformation of the 2017 Mw 6.5 Jiuzhaigou earthquake. Bull. Seism. Soc. Am. 2020, 110, 154–165. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, W.; Wang, Q.; Qiao, X.; Ding, K.; Li, X.; Yang, S. Source characteristics of the 2017 Ms 7.0 Jiuzhaigou, China, earthquake and implications for recent seismicity in eastern Tibet. J. Geophys. Res. Solid Earth 2019, 124, 4895–4915. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, D.; Jia, Z.; Yu, P.; Li, L. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data. Earth Planets Space 2018, 70, 55. [Google Scholar] [CrossRef]
- Peng, W.; Huang, X.; Wang, Z. Coseismic deformation and fault inversion of the 2017 Jiuzhaigou Ms 7.0 Earthquake: Constraints from steerable pyramid and InSAR observations. Remote Sens. 2022, 15, 222. [Google Scholar] [CrossRef]
- Shan, X.; Qu, C.; Gong, W.; Zhao, D.; Zhang, G. Coseismic deformation field of the Jiuzhaigou Ms 7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion. Chin. J. Geophys. 2017, 60, 4527–4536. [Google Scholar]
- Shen, W.; Li, Y.S.; Jiao, Q.; Xie, Q.; Zhang, J. Joint inversion of strong motion and InSAR/GPS data for fault slip distribution of the Jiuzhaigou 7.0 earthquake and its application in seismology. Chin. J. Geophys. 2019, 61, 115–129. [Google Scholar]
- Sun, J.; Yue, H.; Shen, Z.; Fang, L.; Zhan, Y.; Sun, X. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophys. Res. Lett. 2018, 45, 2230–2240. [Google Scholar] [CrossRef]
- Tang, X.; Guo, R.; Xu, J.; Sun, H.; Chen, X.; Zhou, J. Probing the fault complexity of the 2017 Ms 7.0 Jiuzhaigou earthquake based on the InSAR data. Remote Sens. 2021, 13, 1573. [Google Scholar] [CrossRef]
- Wang, J.; Shan, X.; Zhang, G. Fault slip distribution inversion and co-seismic deformation of the 2017 Jiuzhaigou Ms 7.0 earthquake based on InSAR. North China Earthq. Sci. 2018, 36, 1–7. [Google Scholar]
- Zhang, X.; Feng, W.P.; Xu, L.S.; Li, C.L. The source-process inversion and the intensity estimation of the 2017 Ms 7.0 Jiuzhaigou earthquake. Chin. J. Geophys. 2017, 60, 4105–4116. [Google Scholar]
- Zhang, Y.; Zhang, G.; Hetland, E.; Shan, X.; Zhang, H.; Zhao, D.; Gong, W.; Qu, C. Source fault and slip distribution of the 2017 Mw 6.5 Jiuzhaigou, China, earthquake and its tectonic implications. Seismol. Res. Lett. 2018, 89, 1345–1353. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Yi, L.; Feng, W. Confirmation and characterization of the rupture model of the 2017 Ms 7.0 Jiuzhaigou, China, earthquake. Seismol. Res. Lett. 2021, 92, 2927–2942. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, W.; Li, X.; Liu, Y.; Ning, J.; Huang, Q. Joint inversion of rupture across a fault stepover during the 8 August 2017 Mw 6.5 Jiuzhaigou, China, earthquake. Seismol. Res. Lett. 2021, 92, 3386–3397. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Gong, W.; Zhang, Y.; Zhang, G. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms 7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics 2018, 726, 86–99. [Google Scholar] [CrossRef]
- Zheng, A.; Yu, X.; Xu, W.; Chen, X.; Zhang, W. A hybrid source mechanism of the 2017 Mw 6.5 Jiuzhaigou earthquake revealed by the joint inversion of strong-motion, teleseismic and InSAR data. Tectonophysics 2020, 789, 228538. [Google Scholar] [CrossRef]
- Ding, K.; He, P.; Wen, Y.; Chen, Y.; Wang, D.; Li, S.; Wang, Q. The 2017 Mw 7.3 Ezgeleh, Iran earthquake determined from InSAR measurements and teleseismic waveforms. Geophys. J. Int. 2018, 215, 1728–1738. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Herring, T.; King, R.W.; McClusky, S.C. Introduction to Gamit/Globk; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Welstead, S.T. Fractal and Wavelet Image Compression Techniques; SPIE Press: Bellingham, WA, USA, 1999; Volume 40. [Google Scholar]
- Jónsson, S.; Zebker, H.; Segall, P.; Amelung, F. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, C.; Wen, Y.; Liu, Y.; Yin, Z.; Wang, J. Inversion for coseismic slip distribution of the 2010 Mw 6.9 Yushu earthquake from InSAR data using angular dislocations. Geophys. J. Int. 2013, 194, 1011–1022. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Stark, P.B.; Parker, R.L. Bounded variable least squares: An algorithm and application. J. Comput. Stat. 1995, 10, 129–141. [Google Scholar]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling, Geochem. Geophys. Geosyst. 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Chen, S.F.; Wilson, C.J.L.; Deng, Q.D.; Zhao, X.L. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. J. Geophys. Res. Solid Earth 1994, 99, 24025–24038. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Densmore, A.L.; Ellis, M.A. The Geology of the Eastern Margin of the Qinghai-Tibet Plateau; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Zhao, X.; Deng, Q.; Chen, S. Tectonic geomorphology of the Minshan uplift in western Sichuan, southwestern China. Seismol. Geol. 1994, 16, 429–439. (In Chinese) [Google Scholar]
- Zhao, B.; Su, L.; Qiu, C.; Lu, H.; Zhang, B.; Zhang, J.; Geng, X.; Chen, H.; Wang, Y. Understanding of landslides induced by 2022 Luding earthquake, China. J. Rock Mech. Geotech. 2024. [Google Scholar] [CrossRef]
- Dai, L.; Xu, Q.; Fan, X.; Chang, M.; Yang, Q.; Yang, F.; Ren, J. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment. J. Eng. Geol. 2017, 25, 1151–1164. (In Chinese) [Google Scholar]
- Fan, X.; Scaringi, G.; Xu, Q.; Zhan, W.; Dai, L.; Li, Y.; Pei, X.; Yang, Q.; Huang, R. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 2018, 15, 967–983. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and spatial distribution of landslides triggered by the 8th August 2017 MW 6.5 Jiuzhaigou earthquake, China. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
Source | Strike (°) | Dip (°) | Rake (°) * | Patch Size (km) | Max Slip (m) | Depth (km) † | Seismic Moment (N m) | Data | Misfit |
---|---|---|---|---|---|---|---|---|---|
USGS | 153 | 84 | −33 | 7.228 × 1018 | |||||
GCMT | 150 | 78 | −13 | 7.62 × 1018 | |||||
Chen et al. [17] | 155 | 81 | −9.56 | 2 × 2 | 0.91 | 10.86 | 7.754 × 1018 | Sentinel-1A P128A and P062D; 2 GPS sites | |
Chen et al. [18] | 155 | 80 | ~0 | 1 × 1 | ~1 | 10–13 | GaoFen-3 ascending path | ||
Hong et al. [19] | 154.21 | 77.0 | −7.86 | 1 × 1 | 1.06 | 6.84 | 7.85 × 1018 | Sentinel-1A P128A and P062D; RADARSAT-2 ascending path; 10 GPS sites | 1.9 cm; 1.4 cm; 0.8 cm; 0.2 cm |
Ji et al. [20] | 61–90 | ~0 | 2 × 2 | 0.8 | 9.0 | Sentinel-1A P128A, P055A and P062D | |||
Li et al. [21] | 158 | 70 | 1.2 | 3–10 | Sentinel-1A P128A and P062D; 4 GPS sites | 1.028 cm; 0.262 cm | |||
Liu et al. [22] | 148–171 | 88 | 2 × 2 | 9.0 × 1018 | Sentinel-1A P128A and P062D; 10 GPS sites; high-rate GPS and teleseismic waveforms | ~3 cm | |||
Nie et al. [23] | 155 | 81 | −11 | 2 × 2 | 0.85 | 11.0 | 6.6 × 1018 | Sentinel-1A P128A and P062D; 8 GPS sites | 0.25 cm; ~0.2 cm |
Peng et al. [24] | 150 | 50 | 2 × 2 | 0.77 | 9 | 3.98 × 1018 | Sentinel-1A P128A and P062D | ||
Shan et al. [25] | 153 | 50 | ~−9 ‡ | 2 × 2 | ~1 | ~8 | Sentinel-1A P128A and P062D | ||
Shen et al. [26] | 153 | 2 × 2 | 0.74 | 7.6 × 1018 | Sentinel-1A P128A and P062D; 7 GPS sites; 8 strong-motion sites | 2.55 cm | |||
Sun et al. [27] | 151 | 85 | 54.8 | ~2 × 2 | 2.6 | 9.0 | 7.6 × 1018 | Sentinel-1A P128A and P062D; teleseismic waveforms | |
Tang et al. [28] | 151–196 | 77 | 2 × 2 | 1.51 | 6.3 × 1018 | Sentinel-1A P128A | |||
Wang et al. [29] | 154 | 82 | −22 ‡ | 2 × 1 | 0.68 | 7.5 | 9.6 × 1018 | Sentinel-1A P128A and P062D | 1.2 cm; 0.7 cm |
Zhang et al. [30] | 153 | 84 | −14 | 2 × 2 | 1.0 | 6.61 × 1018 | Sentinel-1A P128A; teleseismic waveforms | 1.93 cm; 0.81 | |
Zhang et al. [31] | 153 | 50 | −12 | 2 × 2 | ~1 | 6 | 6.3 × 1018 | Sentinel-1A P128A and P062D; 2 GPS sites | 1.4 cm |
Zhang et al. [32] | 156 | 79 | 2 × 2 | 1.8 | 6.4 | 6.6 × 1018 | Sentinel-1A P128A and P062D; teleseismic waveforms; near-field seismic and strong-motion waveforms | ||
Zhang et al. [33] | 130–151 | 57–70 | 2 × 2 | 5.2 × 1018 | Sentinel-1A P128A and P062D; high-rate GPS and teleseismic and strong-motion waveforms | ||||
Zhao et al. [34] | 115 | 80 | −10 | 1 × 1 | 1.3 | 6.0 | 6.8 × 1018 | Sentinel-1A P128A and P062D; 2 GPS sites | ~6 cm |
Zheng et al. [35] | 145–151.4 | 83.6 | 2 × 2 | 0.8 | 7.9 × 1018 | Sentinel-1A P128A and P062D; teleseismic and strong-motion waveforms | |||
This study | 153 | 77 | 1 × 1 | 1.12 | 6.8 | 5.3 × 1018 | Sentinel-1A P128A and P062D; 7 GPS sites | 1.5 cm; 1.6 cm; 0.1 cm |
Site | Location | Displacement (mm) | Error (mm) | |||
---|---|---|---|---|---|---|
Longitude | Latitude | E | N | E | N | |
BDWD | 104.91°E | 33.40°N | −2.5 | 0.9 | 1.3 | 1.2 |
GSWD | 104.82°E | 33.42°N | −0.8 | 1.3 | 0.6 | 0.9 |
GSWX | 104.68°E | 32.95°N | −2.6 | 0.9 | 1.1 | 0.8 |
GSZQ | 104.25°E | 33.80°N | 0.4 | 3.6 | 1.2 | 0.8 |
SCJZ | 104.25°E | 33.24°N | −9.8 | 3.3 | 1.5 | 0.7 |
SCPW | 104.54°E | 32.41°N | −0.4 | 1.3 | 1.4 | 1.1 |
SCSP | 103.58°E | 32.65°N | −1.8 | −7.7 | 0.7 | 0.6 |
ID | Orbit | Master | Slave | Perpendicular Baseline |
---|---|---|---|---|
YYYY/MM/DD | YYYY/MM/DD | (m) | ||
P128A | Ascending | 2017/07/30 | 2017/08/11 | −37 |
P062D | Descending | 2017/08/06 | 2017/08/18 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhao, Y. Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data. Remote Sens. 2024, 16, 3406. https://doi.org/10.3390/rs16183406
Sun Z, Zhao Y. Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data. Remote Sensing. 2024; 16(18):3406. https://doi.org/10.3390/rs16183406
Chicago/Turabian StyleSun, Zhengwen, and Yingwen Zhao. 2024. "Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data" Remote Sensing 16, no. 18: 3406. https://doi.org/10.3390/rs16183406
APA StyleSun, Z., & Zhao, Y. (2024). Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data. Remote Sensing, 16(18), 3406. https://doi.org/10.3390/rs16183406