Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lake Ranco: Study Area
2.2. Analysis of Ecosystem Services
2.2.1. Ecosystem Services of Lake Ranco
2.2.2. Human–Nature Interaction
2.3. In Situ and Meteorological Data
2.4. Pre-Processing Satellite Images
Bandas/Indices Names | Sensor | Resolution | Equation | References |
---|---|---|---|---|
Blue | L8-OLI/S2-A/B | 30 m/10 m | B (/490 nm) | [41,42] |
Green | L8-OLI/S2-A/B | 30 m/10 m | G (/560 nm) | [43,44] |
Red | L8-OLI/S2-A/B | 30 m/10 m | R (/665 nm) | [17,45] |
Near Infrared | L8-OLI/S2-A/B | 30 m/10 m | NIR (/842 nm) | [17,43] |
Shortwave Infrared | L8-OLI/S2-A/B | 30 m/20 m | SWIR | [45,46] |
Red/Infrared | L8-OLI/S2-A/B | 30 m/10 m | R/NIR | [17,44] |
Infrared/Red | L8-OLI/S2-A/B | 30 m/10 m | NIR/R | [17,47] |
Normalized Difference Vegetation Index | L8-OLI/S2-A/B | 30 m/10 m | NDVI = (NIR − R)/(NIR + R) | [48,49] |
Floating Algae Index | L8-OLI/S2-A/B | 30 m/10–20 m | FAI = NIR − NIR with NIR = R + (SWIR − R) × (λNIR − λR)/(λSWIR − λR) | [15,50] |
Surface Algal Bloom Index | L8-OLI/S2-A/B | 30 m/10 m | SABI = (NIR − R)/(B + G) | [51,52] |
Green Normalized Difference Vegetation Index | L8-OLI/S2-A/B | 30 m/10 m | GNDVI = (NIR − G)/(NIR + G) | [15,42] |
Chlorophyll Index—Green | L8-OLI/S2-A/B | 30 m/10 m | CI-G = (NIR/G) − 1 | [53,54] |
Green Blue (Two-Band) Ratio | L8-OLI/S2-A/B | 30 m/10 m | CHL_OC2 = B/G | [55,56] |
2.5. Machine Learning Algorithms
2.5.1. Recurrent Neural Networks (RNNs)
2.5.2. Long Short-Term Memory (LSTM)
2.5.3. GRU
2.5.4. Temporal Convolutional Network (TCN)
2.6. Algorithm Processsing
2.7. Statistics Validation
3. Results
3.1. Water Quality Parameters
3.2. Meteorological Conditions
3.3. Models Estimation
3.3.1. Case 1
3.3.2. Case 2
3.3.3. Case 3
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Zhang, M.; Yang, R.; Tang, W. Spatiotemporal Variations in the Carbon Sequestration Capacity of Plateau Lake Wetlands Regulated by Land Use Control under Policy Guidance. Land 2023, 12, 1695. [Google Scholar] [CrossRef]
- Shen, W.; Liu, Z. Urbanization Shifts Freshwater Service Flows in the Highly Urbanized Watersheds of Dongjiang River, China. Appl. Geogr. 2023, 161, 103140. [Google Scholar] [CrossRef]
- Mishra, R.K. The Effect of Eutrophication on Drinking Water. Br. J. Multidiscip. Adv. Stud. 2023, 4, 7–20. [Google Scholar] [CrossRef]
- Ramanaiah, S.V.; Chandrasekhar, K.; Cordas, C.M.; Potoroko, I. Bioelectrochemical Systems (BESs) for Agro-Food Waste and Wastewater Treatment, and Sustainable Bioenergy-A Review. Environ. Pollut. 2023, 325, 121432. [Google Scholar] [CrossRef] [PubMed]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Heino, J.; Alahuhta, J.; Bini, L.M.; Cai, Y.; Heiskanen, A.S.; Hellsten, S.; Kortelainen, P.; Kotamäki, N.; Tolonen, K.T.; Vihervaara, P.; et al. Lakes in the Era of Global Change: Moving beyond Single-Lake Thinking in Maintaining Biodiversity and Ecosystem Services. Biol. Rev. 2021, 96, 89–106. [Google Scholar] [CrossRef]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef]
- Gong, D.; Huang, M.; Lin, H. Construction of an Ecological Security Pattern in Rapidly Urbanizing Areas Based on Ecosystem Sustainability, Stability, and Integrity. Remote Sens. 2023, 15, 5728. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Liu, H.; Zhang, B.; An, W.; Zhu, C. Effects of Urban Lakes and Neighbouring Green Spaces on Air Temperature and Humidity and Seasonal Variabilities. Sustain. Cities Soc. 2023, 91, 104438. [Google Scholar] [CrossRef]
- Ferreira, V.; Albariño, R.; Larrañaga, A.; LeRoy, C.J.; Masese, F.O.; Moretti, M.S. Ecosystem Services Provided by Small Streams: An Overview. Hydrobiologia 2023, 850, 2501–2535. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Barquín, J.; Bonada, N.; Cantonati, M.; Churro, C.; Corbera, J.; Delgado, C.; Dulsat-Masvidal, M.; Garcia, G.; Margalef, O.; et al. Mediterranean Springs: Keystone Ecosystems and Biodiversity Refugia Threatened by Global Change. Glob. Change Biol. 2024, 30, e16997. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.Z.; Lin, L.; Xu, J.F.; Dai, W.H.; Song, Y.B.; Dong, M. Spatio-Temporal Characteristics of Cultural Ecosystem Services and Their Relations to Landscape Factors in Hangzhou Xixi National Wetland Park, China. Ecol. Indic. 2023, 154, 110910. [Google Scholar] [CrossRef]
- Ghasemi, M.; González-García, A.; Charrahy, Z.; Serrao-Neumann, S. Utilizing Supply-Demand Bundles in Nature-Based Recreation Offers Insights into Specific Strategies for Sustainable Tourism Management. Sci. Total Environ. 2024, 922, 171185. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Duran-Llacer, I.; Bravo Alvarez, L.; Lami, A.; Urrutia, R. Recovery of Water Quality and Detection of Algal Blooms in Lake Villarrica through Landsat Satellite Images and Monitoring Data. Remote Sens. 2023, 15, 1929. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral Analysis Using LANDSAT Images to Monitor the Chlorophyll-a Concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; Cardenas, R.; Urrutia, R. Spatio-Temporal Analysis of Chlorophyll in Six Araucanian Lakes of Central-South Chile from Landsat Imagery. Ecol. Inform. 2021, 65, 101431. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Roy, D.P.; Wulder, M.A.; Anderson, M.; Cook, B.; Crawford, C.J.; Friedl, M.; Gao, F.; Gorelick, N.; Hansen, M.; et al. Need and Vision for Global Medium-Resolution Landsat and Sentinel-2 Data Products. Remote Sens. Environ. 2024, 300, 113918. [Google Scholar] [CrossRef]
- Amieva, J.F.; Oxoli, D.; Brovelli, M.A. Machine and Deep Learning Regression of Chlorophyll-a Concentrations in Lakes Using PRISMA Satellite Hyperspectral Imagery. Remote Sens. 2023, 15, 5385. [Google Scholar] [CrossRef]
- Shahvaran, A.R.; Kheyrollah Pour, H.; Van Cappellen, P. Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario). Remote Sens. 2024, 16, 1595. [Google Scholar] [CrossRef]
- de Liz Arcari, A.; Tavora, J.; van der Wal, D.; Salama, M.S. The Wastewater Contamination Index: A Methodology to Assess the Risk of Wastewater Contamination from Satellite-Derived Water Quality Indicators. Front. Environ. Sci. 2023, 11, 1130655. [Google Scholar] [CrossRef]
- D’Ugo, E.; Mukherjee, A.; Giuseppetti, R.; Tucci, M.; Bucci, P.; Aulenta, F.; Laneve, G.; Magurano, F. Integration of Satellite Surveillance and Metagenomics for the Monitoring and Protection of Water Basins from Oil Spills. Environ. Adv. 2024, 15, 100498. [Google Scholar] [CrossRef]
- da Silva, L.D.; Mahmoud, M.; González-Rodríguez, L.; Mohammed, S.; Rodríguez-López, L.; Arias, M.I.A. Assessment of the IMERG Early-Run Precipitation Estimates over South American Country of Chile. Remote Sens. 2023, 15, 573. [Google Scholar] [CrossRef]
- Mukonza, S.S.; Chiang, J.L. Meta-Analysis of Satellite Observations for United Nations Sustainable Development Goals: Exploring the Potential of Machine Learning for Water Quality Monitoring. Environments 2023, 10, 170. [Google Scholar] [CrossRef]
- Sudriani, Y.; Sebestyen, V.; Abonyi, J. Surface Water Monitoring Systems—The Importance of Integrating Information Sources for Sustainable Watershed Management. IEEE Access 2023, 11, 36421–36451. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; SaberiKamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Hun Jeon, B.; Ahn, Y. The Latest Innovative Avenues for the Utilization of Artificial Intelligence and Big Data Analytics in Water Resource Management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Usta, D.B.; Duran-Llacer, I.; Alvarez, L.B.; Yépez, S.; Bourrel, L.; Frappart, F.; Urrutia, R. Estimation of Water Quality Parameters through a Combination of Deep Learning and Remote Sensing Techniques in a Lake in Southern Chile. Remote Sens. 2023, 15, 4157. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Alvarez, D.; Bustos Usta, D.; Duran-Llacer, I.; Bravo Alvarez, L.; Fagel, N.; Bourrel, L.; Frappart, F.; Urrutia, R. Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake. Remote Sens. 2024, 16, 647. [Google Scholar] [CrossRef]
- Aranda, A.C.; Rivera-Ruiz, D.; Rodríguez-López, L.; Pedreros, P.; Arumí-Ribera, J.L.; Morales-Salinas, L.; Fuentes-Jaque, G.; Urrutia, R. Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile. Remote Sens. 2021, 13, 4535. [Google Scholar] [CrossRef]
- Municipalidad Lago Ranco. Ilustre Municipalidad de Lago Ranco “Modificación Plan Regulador Comunal de Lago Ranco”; Ranco. 2013. Available online: https://eae.mma.gob.cl/storage/documents/02_3er_IA_PRC_Lago_Ranco.pdf.pdf (accessed on 1 August 2024).
- Hermosilla, K.; Gutiérrez, M.; Escalona, M. Caracterizacion de la oferta turistica y zonificacion en la cuenca del lago. Estud. Perspect. Tur. 2011, 20, 943–959. [Google Scholar]
- Figueroa, E.S. El Turismo Sustentable Como Base el Desarrollo Económico Local: El Caso de la Comuna de Lago Ranco; Mérida, Venezuela, 2018. [Google Scholar]
- Salinas, O. El Secreto Verde del Lago Ranco. Available online: https://parquefutangue.com/blog/secreto-lago-ranco/ (accessed on 1 August 2024).
- Saravia, G. Nuevas Configuraciones del Paisaje del Agua En Los Lagos Nor-Patagónicos de Chile. Rev. Bordes Lacustres 2021, 1, 31–79. [Google Scholar]
- Vanhellemont, Q. Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry. Opt. Express 2020, 28, 29948. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Abirhire, O.; Davies, J.M.; Guo, X.; Hudson, J. Understanding the Factors Associated with Long-Term Reconstructed Turbidity in Lake Diefenbaker from Landsat-Imagery. Sci. Total Environ. 2020, 724, 138222. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Bustos Usta, D.; Bravo Alvarez, L.; Duran-Llacer, I.; Lami, A.; Martínez-Retureta, R.; Urrutia, R. Machine Learning Algorithms for the Estimation of Water Quality Parameters in Lake Llanquihue in Southern Chile. Water 2023, 15, 1994. [Google Scholar] [CrossRef]
- Ma, J.; Jin, S.; Li, J.; He, Y.; Shang, W. Spatio-Temporal Variations and Driving Forces of Harmful Algal Blooms in Chaohu Lake: A Multi-Source Remote Sensing Approach. Remote Sens. 2021, 13, 427. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N.; Blaustein, J. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Kravitz, J.; Matthews, M.; Lain, L.; Fawcett, S.; Bernard, S. Potential for High Fidelity Global Mapping of Common Inland Water Quality Products at High Spatial and Temporal Resolutions Based on a Synthetic Data and Machine Learning Approach. Front. Environ. Sci. 2021, 9, 587660. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Pamula, A.S.P.; Gholizadeh, H.; Krzmarzick, M.J.; Mausbach, W.E.; Lampert, D.J. A Remote Sensing Tool for near Real-Time Monitoring of Harmful Algal Blooms and Turbidity in Reservoirs. J. Am. Water Resour. Assoc. 2023, 59, 929–949. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Li, L. A Deep Learning Method for Cyanobacterial Harmful Algae Blooms Prediction in Taihu Lake, China. Harmful Algae 2022, 113, 102189. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between Satellite-Derived Land Surface Temperatures, Arctic Vegetation Types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalvas, D.; Petropoulos, G.P.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Boucher, J.; Weathers, K.C.; Norouzi, H.; Steele, B. Assessing the Effectiveness of Landsat 8 Chlorophyll a Retrieval Algorithms for Regional Freshwater Monitoring. Ecol. Appl. 2018, 28, 1044–1054. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of Surface Algal Blooms Using the Newly Developed Algorithm Surface Algal Bloom Index (SABI). In Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7825, p. 782506. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Institute of Natural Sciences. Acolite Manual; Institute of Natural Sciences: Brussels, Belgium, 2022. [Google Scholar]
- Piech, K.R.; Schott, J.R.; Stewart, K.M. The Blue-to-Green Reflectance Ratio and Lake Water Quality Monitoring from Aircraft or Space Considerably Reduces the Amount of in Situ Sampling Required. Photogramm. Eng. Remote Sens. 1978, 44, 1303–1310. [Google Scholar]
- Ruiz-Guirola, D.E.; Lopez, O.L.A.; Montejo-Sanchez, S.; Souza, R.D.; Bennis, M. Performance Analysis of ML-Based MTC Traffic Pattern Predictors. IEEE Wirel. Commun. Lett. 2023, 12, 1144–1148. [Google Scholar] [CrossRef]
- Gers, F.A.; Urgen Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2020, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Won, J.; Jang, S.; Kim, S. Learning Enhancement Method of Long Short-Term Memory Network and Its Applicability in Hydrological Time Series Prediction. Water 2022, 14, 2910. [Google Scholar] [CrossRef]
- de la Fuente, A.; Meruane, V.; Meruane, C. Hydrological Early Warning System Based on a Deep Learning Runoff Model Coupled with a Meteorological Forecast. Water 2019, 11, 1808. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: Lstm Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition. Sci. Total Environ. 2021, 768, 144516. [Google Scholar] [CrossRef]
- Nosouhian, S.; Nosouhian, F.; Khoshouei, A.K. A Review of Recurrent Neural Network Architecture for Sequence Learning: Comparison between LSTM and GRU. Preprints 2021, 2021070252. [Google Scholar] [CrossRef]
- Duc, T.N.; Minh, C.T.; Xuan, T.P.; Kamioka, E. Convolutional Neural Networks for Continuous QoE Prediction in Video Streaming Services. IEEE Access 2020, 8, 116268–116278. [Google Scholar] [CrossRef]
- Liu, S.; Xu, T.; Du, X.; Zhang, Y.; Wu, J. A Hybrid Deep Learning Model Based on Parallel Architecture TCN-LSTM with Savitzky-Golay Filter for Wind Power Prediction. Energy Convers. Manag. 2024, 302, 118122. [Google Scholar] [CrossRef]
- Sharma, M.; Pachori, R.B.; Rajendra Acharya, U. A New Approach to Characterize Epileptic Seizures Using Analytic Time-Frequency Flexible Wavelet Transform and Fractal Dimension. Pattern Recognit. Lett. 2017, 94, 172–179. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; García, W.; Cardenas, R.; Urrutia, R. Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake. Remote Sens. 2022, 14, 4568. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as Sentinels of Climate Change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and Reservoirs as Sentinels, Integrators, and Regulators of Climate Change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Moss, B. Cogs in the Endless Machine: Lakes, Climate Change and Nutrient Cycles: A Review. Sci. Total Environ. 2012, 434, 130–142. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Yépez, S.; Velásquez, G.; Torres, D.; Saavedra-Passache, R.; Pincheira, M.; Cid, H.; Rodríguez-López, L.; Contreras, A.; Frappart, F.; Cristóbal, J.; et al. Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sens. 2024, 16, 427. [Google Scholar] [CrossRef]
- Inácio, M.; Das, M.; Barceló, D.; Pereira, P. Frameworks for Mapping Lake Ecosystem Services. An Example from Lithuania. MethodsX 2023, 10, 102015. [Google Scholar] [CrossRef]
Id | Path/Row | In Situ-Date | Year | Image Date | Day Differences |
---|---|---|---|---|---|
LC08_L1TP_233088_20140226_20200911_02_T1 | 233/88 | 18 February 2014 | 2014 | 26 February 2014 | 8 |
LC08_L1TP_232088_20150206_20200909_02_T1 | 232/88 | 11 February 2015 | 2015 | 6 February 2015 | 5 |
LC08_L1TP_233088_20151011_20200908_02_T1 | 233/88 | 6 October 2015 | 2015 | 11 October 2015 | 5 |
S2A_MSIL1C_20160122T142942_N0201_R053_T18GYA_20160122T144141 | T18GYA | 19 January 2016 | 2016 | 22 January 2016 | 3 |
S2B_MSIL1C_20200126T142649_N0208_R053_T18GYA_20200126T174938 | T18GYA | 27 January 2020 | 2020 | 26 January 2020 | 1 |
S2A_MSIL1C_20201126T142731_N0209_R053_T18GYA_20201126T180345 | T18GYA | 23 November 2020 | 2020 | 26 November 2020 | 3 |
S2A_MSIL1C_20210306T142731_N0209_R053_T18GYA_20210306T180339 | T18GYA | 4/5 March 2021 | 2021 | 6 March 2021 | 2, 1 |
S2B_MSIL1C_20210811T143729_N0500_R096_T18GYA_20230211T201839 | T18GYA | 4/5 August 2021 | 2021 | 8 August 2021 | 4, 3 |
S2B_MSIL1C_20211116T142729_N0301_R053_T18GYA_20211116T175548 | T18GYA | 7/8 November 2021 | 2021 | 9 November 2021 | 2, 1 |
S2A_MSIL1C_20220311T142741_N0400_R053_T18GYA_20220311T175316 | T18GYA | 9 March 2022 | 2022 | 11 March 2022 | 2 |
Summer | Autumn | Winter | Spring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | R3 | R4 | R2 | R3 | R4 | R2 | R3 | R4 | R2 | R3 | R4 | ||
SD (m) | Avg | 15.7 | 15.8 | 15.0 | 13.5 | 16.4 | 13.1 | 12.3 | 12.3 | 12.7 | 13.6 | 13.6 | 13.4 |
Max | 23 | 21.5 | 19.5 | 18.5 | 20.5 | 18 | 19 | 17.7 | 17.5 | 18.6 | 18 | 18.5 | |
Min | 10.5 | 10 | 8.5 | 10 | 11 | 5.5 | 7 | 8 | 8 | 8.5 | 8 | 9 | |
SD | 3.9 | 3.9 | 3.58 | 3.0 | 2.9 | 3.2 | 2.9 | 2.7 | 2.8 | 3.1 | 2.4 | 2.9 | |
CV (%) | 0.2 | 0.2 | 0.23 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.17 | 0.2 | |
N | 14 | 14 | 13 | 13 | 13 | 12 | 16 | 15 | 15 | 15 | 15 | 15 | |
T (°C) | Avg | 19.2 | 19.0 | 19.4 | 14.1 | 14.1 | 13.9 | 10.1 | 10.7 | 10.7 | 13.5 | 13.0 | 13.7 |
Max | 21.5 | 20.2 | 20.6 | 16.6 | 17 | 16.7 | 15.7 | 15.4 | 15.2 | 16.2 | 16.2 | 16.5 | |
Min | 17.8 | 17.8 | 17.9 | 12.9 | 12.3 | 11.7 | 9.2 | 9.2 | 10.0 | 11.5 | 10.9 | 10.4 | |
SD | 1.0 | 0.8 | 0.8 | 1.3 | 1.3 | 1.4 | 1.4 | 1.3 | 1.2 | 1.2 | 1.6 | 1.8 | |
CV (%) | 0.5 | 0.3 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.11 | 0.1 | |
N | 15 | 14 | 14 | 15 | 15 | 15 | 18 | 17 | 17 | 16 | 16 | 16 | |
pH (unit) | Avg | 7.7 | 7.6 | 7.7 | 7.4 | 7.4 | 7.4 | 7.5 | 7.4 | 7.4 | 7.5 | 7.6 | 7.5 |
Max | 8.1 | 8.1 | 8.1 | 7.73 | 7.8 | 7.8 | 7.9 | 7.8 | 7.8 | 8.3 | 8.3 | 8.3 | |
Min | 6.9 | 6.8 | 6.9 | 6.7 | 6.7 | 6.2 | 6.8 | 6.9 | 6.9 | 6.2 | 7.1 | 6.7 | |
SD | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | 0.3 | 27 | 0.3 | 0.5 | 0.3 | 0.4 | |
CV (%) | 0.1 | 0.1 | 0.1 | 0.4 | 0.4 | 0.1 | 0.3 | 0.0 | 0.3 | 0.0 | 0.4 | 0.5 | |
N | 15 | 14 | 14 | 14 | 15 | 14 | 18 | 17 | 17 | 16 | 16 | 16 | |
DO (mg/L) | Avg | 9.1 | 9.1 | 8.9 | 9.4 | 9.6 | 9.8 | 10.6 | 10.7 | 10.5 | 10.2 | 10.2 | 10.2 |
Max | 10.7 | 14 | 9.7 | 10.3 | 10.3 | 10.5 | 12.1 | 12.1 | 11.9 | 11.1 | 11.2 | 11.6 | |
Min | 8.1 | 8.3 | 8.3 | 7.9 | 8.6 | 9.2 | 9.8 | 9.7 | 9.8 | 8.61 | 8.9 | 8.3 | |
SD | 0.7 | 0.5 | 0.3 | 0.7 | 0.4 | 0.4 | 0.6 | 0.6 | 0.52 | 0.6 | 0.6 | 0.8 | |
CV (%) | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
N | 15 | 14 | 14 | 15 | 15 | 15 | 18 | 16 | 17 | 16 | 16 | 16 | |
(NTU) | Avg | 4.3 | 3.2 | 3.2 | 2.4 | 2.8 | 2.7 | 1.5 | 1.2 | 2.2 | 2.1 | 3.9 | 1.1 |
Max | 10.3 | 14 | 14 | 6.4 | 7.9 | 15 | 18 | 3.7 | 5.8 | 2.5 | 6.9 | 2.6 | |
Min | 0.8 | 0.7 | 1.1 | 0.3 | 0.3 | 14 | 0.4 | 0.2 | 0.4 | 1.6 | 2.3 | 0.3 | |
SD | 4.5 | 2.9 | 2.4 | 2.1 | 2.9 | 2.5 | 1.7 | 1.3 | 2.5 | 0.6 | 2.6 | 1.3 | |
CV (%) | 1.0 | 0.9 | 0.8 | 0.9 | 1.0 | 0.9 | 0.8 | 1.1 | 1.1 | 0.3 | 0.7 | 1.1 | |
N | 4 | 5 | 4 | 6 | 5 | 5 | 5 | 7 | 4 | 2 | 3 | 3 | |
Chl-a (µg/L) | Avg | 0.7 | 0.8 | 0.7 | 1.1 | 1.1 | 1.3 | 1.1 | 1.4 | 1.8 | 0.8 | 0.8 | 0.8 |
Max | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.2 | 3.1 | 3.3 | 3.7 | 1.9 | 1.9 | 1.9 | |
Min | 0.2 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.2 | |
SD | 0.5 | 0.6 | 0.6 | 0.4 | 0.4 | 0.6 | 0.6 | 0.8 | 0.8 | 0.5 | 0.5 | 0.5 | |
CV (%) | 0.8 | 0.7 | 0.8 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | |
N | 13 | 11 | 12 | 12 | 12 | 12 | 17 | 16 | 15 | 13 | 13 | 13 | |
NT (mg/L) | Avg | 156 | 158 | 156 | 157 | 157 | 157 | 90.0 | 92.1 | 89.9 | 94.4 | 85.2 | 94.3 |
Max | 310 | 310 | 310 | 166 | 166 | 166 | 177 | 177 | 177 | 166 | 166 | 166 | |
Min | 15.6 | 15.6 | 15.6 | 148 | 148 | 148 | 30.7 | 30.7 | 30.7 | 40.4 | 35.6 | 40.4 | |
SD | 111 | 108 | 111 | 9.0 | 8.9 | 8.9 | 56.6 | 56.4 | 56.6 | 56.1 | 50.8 | 56.1 | |
CV (%) | 0.7 | 0.7 | 0.7 | 0.1 | 0.1 | 0.1 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | |
N | 6 | 9 | 6 | 3 | 3 | 3 | 6 | 9 | 6 | 5 | 7 | 5 | |
PT (mg/L) | Avg | 127 | 71.4 | 48.1 | 6.0 | 6.9 | 7.3 | 6.4 | 7.1 | 9.8 | 8.4 | 9.1 | 12.7 |
Max | 13 | 11 | 12 | 8.6 | 9.3 | 11.0 | 11.3 | 13.1 | 17.6 | 12.6 | 18.6 | 31.2 | |
Min | 2.9 | 3.2 | 3.4 | 3 | 4.5 | 4.4 | 2.6 | 3.1 | 2.8 | 3.3 | 3.3 | 3.4 | |
SD | 275 | 128 | 85.3 | 1.8 | 2.1 | 2.9 | 2.8 | 3.4 | 5.8 | 4.2 | 6.2 | 11.2 | |
CV (%) | 2.2 | 1.8 | 1.8 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.6 | 0.5 | 0.8 | 0.9 | |
N | 5 | 5 | 5 | 5 | 5 | 5 | 8 | 7 | 7 | 5 | 5 | 5 |
Case | Model | R2 | RMSE (µg/L) | MAE (µg/L) | MSE (µg/L)2 |
---|---|---|---|---|---|
1 | RNN | 0.72 | 0.27 | 1.97 | 0.25 |
LSTM | 0.89 | 0.32 | 1.25 | 0.10 | |
GRU | 0.88 | 0.34 | 1.65 | 0.11 | |
TCN | 0.73 | 0.49 | 2.40 | 2.40 | |
2 | RNN | 0.39 | 0.66 | 1.36 | 0.43 |
LSTM | 0.86 | 0.37 | 0.28 | 0.13 | |
GRU | 0.85 | 0.38 | 1.08 | 0.14 | |
TCN | 0.66 | 0.54 | 1.73 | 0.29 | |
3 | RNN | 0.66 | 0.71 | 4.16 | 0.50 |
LSTM | 0.69 | 0.42 | 2.00 | 0.64 | |
GRU | 0.82 | 0.30 | 2.86 | 0.52 | |
TCN | 0.96 | 0.13 | 0.06 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-López, L.; Bravo Alvarez, L.; Duran-Llacer, I.; Ruíz-Guirola, D.E.; Montejo-Sánchez, S.; Martínez-Retureta, R.; López-Morales, E.; Bourrel, L.; Frappart, F.; Urrutia, R. Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile. Remote Sens. 2024, 16, 3401. https://doi.org/10.3390/rs16183401
Rodríguez-López L, Bravo Alvarez L, Duran-Llacer I, Ruíz-Guirola DE, Montejo-Sánchez S, Martínez-Retureta R, López-Morales E, Bourrel L, Frappart F, Urrutia R. Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile. Remote Sensing. 2024; 16(18):3401. https://doi.org/10.3390/rs16183401
Chicago/Turabian StyleRodríguez-López, Lien, Lisandra Bravo Alvarez, Iongel Duran-Llacer, David E. Ruíz-Guirola, Samuel Montejo-Sánchez, Rebeca Martínez-Retureta, Ernesto López-Morales, Luc Bourrel, Frédéric Frappart, and Roberto Urrutia. 2024. "Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile" Remote Sensing 16, no. 18: 3401. https://doi.org/10.3390/rs16183401
APA StyleRodríguez-López, L., Bravo Alvarez, L., Duran-Llacer, I., Ruíz-Guirola, D. E., Montejo-Sánchez, S., Martínez-Retureta, R., López-Morales, E., Bourrel, L., Frappart, F., & Urrutia, R. (2024). Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile. Remote Sensing, 16(18), 3401. https://doi.org/10.3390/rs16183401