Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Datasets and Derived Products
2.3. Computation of Seasonal Anomalies
3. Results
3.1. Land Surface Temperature Anomalies
3.2. Amplitude of LST
3.3. Vegetation Greenness
3.4. Impact of Forest Fires
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perkins-Kirkpatrick, S.; Barriopedro, D.; Jha, R.; Wang, L.; Mondal, A.; Libonati, R.; Kornhuber, K. Extreme terrestrial heat in 2023. Nat. Rev. Earth Environ. 2024, 5, 244–246. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Jimenez, J.C.; Marengo, J.A.; Schongart, J.; Ronchail, J.; Lavado-Casimiro, W.; Ribeiro, J.R.M. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 2024, 14, 8107. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Cunha, A.P.; Espinoza, J.C.; Fu, R.; Schongart, J.; Jimenez, J.C.; Costa, M.C.; Ribeiro, J.M.; Wongchuig, S.; Zhao, S. Extremes of hydrometeorology and dry season length in Amazonia associated with the drought of 2023. Am. J. Clim. Chang. 2024, under review. [Google Scholar]
- Rodrigues, M. The Amazon’s record-setting drought: How bad will it be? Nature 2023, 623, 675–676. [Google Scholar] [CrossRef]
- Clarke, B.; Barnes, C.; Rodrigues, R.; Zachariah, M.; Stewart, S.; Raju, E.; Baumgart, N.; Heinrich, D.; Libonati, R.; Santos, D.; et al. Climate Change, Not El Niño, Main Driver of Exceptional Drought in Highly Vulnerable Amazon River Basin. Available online: https://spiral.imperial.ac.uk/handle/10044/1/108761 (accessed on 21 May 2024).
- Van Lanen, H.A.J.; Vogt, J.V.; Andreu, J.; Carrão, H.; De Stefano, L.; Dutra, E.; Feyen, L.; Forzieri, G.; Hayes, M.; Iglesias, A.; et al. Climatological risk: Droughts. In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I., Eds.; EUR 28034 EN; Publications Office of the European Union: Luxembourg, 2017; Chapter 3.9. [Google Scholar] [CrossRef]
- Asner, G.P.; Alencar, A. Drought impacts on the amazon forest: The remote sensing perspective. New Phytol. 2010, 187, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Malhi, Y.; Aragão, L.E.O.C.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Ribeiro Neto, G.; Cunha, A.P.; Fonseca, M.G.; Mendes de Moura, Y.; Dalagnol, R.; Wagner, F.H.; de Aragão, L.E.O.E.C. Vulnerability of amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170411. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Lakshmi Kumar, T.V.; Thakur, M.K.; de Oliveira Buriti, C. Long-Term Spatiotemporal Variation of Droughts in the Amazon River Basin. Water 2021, 13, 351. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, X.; Zhou, T.; Wu, D.; Tang, B.; Wei, H. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE 2017, 12, e0175379. [Google Scholar] [CrossRef]
- Samanta, A.; Ganguly, S.; Vermote, E.; Nemani, R.R.; Myneni, R.B. Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009. Environ. Res. Lett. 2012, 7, 024018. [Google Scholar] [CrossRef]
- Xu, L.; Samanta, A.; Costa, M.H.; Ganguly, S.; Nemani, R.R.; Myneni, R.B. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 2011, 38, L07402. [Google Scholar] [CrossRef]
- Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 2010, 37, L05401. [Google Scholar] [CrossRef]
- Machado-Silva, F.; Peres, L.F.; Gouveia, C.M.; Enrich-Prast, A.; Peixoto, R.B.; Pereira, J.M.C.; Marotta, H.; Fernandes, P.J.F.; Libonati, R. Drought resilience debt drives NPP decline in the Amazon forest. Glob. Biogeochem. Cycles 2021, 35, e2021GB007004. [Google Scholar] [CrossRef]
- Panisset, J.S.; Libonati, R.; Gouveia, C.M.P.; Machado-Silva, F.; França, D.A.; França, J.R.A.; Peres, L.F. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 2018, 38, 1096–1104. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Mattar, C.; Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 2013, 118, 5204–5215. [Google Scholar] [CrossRef]
- Toomey, M.; Roberts, D.A.; Still, C.; Goulden, M.L.; McFadden, J.P. Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophys. Res. Lett. 2011, 38, L19704. [Google Scholar] [CrossRef]
- Liu, S.; McVicar, T.R.; Wu, X.; Cao, X.; Liu, Y. Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: Not all droughts are created equal. Environ. Res. Lett. 2024, 19, 034027. [Google Scholar] [CrossRef]
- Cano-Crespo, A.; Traxl, D.; Thonicke, K. Spatio-temporal patterns of extreme fires in Amazonian forests. Eur. Phys. J. Spec. Top. 2021, 230, 3033–3044. [Google Scholar] [CrossRef]
- Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; Hoorn, C.; Malhi, Y.; Phillips, O.; Encalada, A.C.; ter Steege, H.; Melack, J.; Trumbore, S.E.; Hecht, S.; Varese, M.; et al. The Multiple Viewpoints for the Amazon: Geographic Limits and Meanings. Available online: https://www.theamazonwewant.org/wp-content/uploads/2021/09/220105_The-multiple-viewpoints-for-the-Amazon-formatted-and-reviewed-050122.pdf (accessed on 21 May 2024).
- Garcia, B.N.; Libonati, R.; Nunes, A.M.B. Extreme drought events over the Amazon Basin: The perspective from the reconstruction of South American hydroclimate. Water 2018, 10, 1594. [Google Scholar] [CrossRef]
- Builes-Jaramillo, A.; Poveda, G. Conjoint analysis of surface and atmospheric water balances in the Andes-Amazon system. Water Resour. Res. 2018, 54, 3472–3489. [Google Scholar] [CrossRef]
- Moura, M.M.; dos Santos, A.R.; Pezzopane, J.E.M.; Alexandre, R.S.; da Silva, S.F.; Pimentel, S.M.; de Carvalho, J.R. Relation of el niño and la niña phenomena to precipitation, evapotranspiration and temperature in the amazon basin. Sci. Total Environ. 2019, 651, 1639–1651. [Google Scholar] [CrossRef]
- Zhou, J.; Lau, K. Does a Monsoon Climate Exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Kodama, Y. Large-scale common features of subtropical precipitation zones (the baiu frontal zone, the SPCZ, and the SACZ) part I: Characteristics of subtropical frontal zones. J. Meteorol. Soc. Japan. Ser. II 1992, 70, 813–836. [Google Scholar] [CrossRef]
- Kodama, Y. Large-scale common features of sub-tropical convergence zones (the baiu frontal zone, the SPCZ, and the SACZ) part II: Conditions of the circulations for generating the STCZs. J. Meteorol. Soc. Japan. Ser. II 1993, 71, 581–610. [Google Scholar] [CrossRef]
- Montini, T.L.; Jones, C.; Carvalho, L.M.V. The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos. 2019, 124, 1200–1218. [Google Scholar] [CrossRef]
- Byrne, M.P.; Pendergrass, A.G.; Rapp, A.D.; Wodzicki, K.R. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Curr. Clim. Chang. Rep. 2018, 4, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Paca, V.H.d.M.; Espinoza-Dávalos, G.E.; Moreira, D.M.; Comair, G. Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water 2020, 12, 1244. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Olivera, E.; Pombosa, R.; Vauchel, P. Spatio—Temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef]
- Vilanova, R.S.; Delgado, R.C.; Frossard de Andrade, C.; Lopes dos Santos, G.; Magistrali, I.C.; Moreira de Oliveira, C.M.; Teodoro, P.E.; Capristo Silva, G.F.; Silva Junior, C.A.d.; de Ávila Rodrigues, R. Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the western brazilian amazon. Remote Sens. Appl. Soc. Environ. 2021, 23, 100531. [Google Scholar] [CrossRef]
- Moon, M.; Zhang, X.; Henebry, G.M.; Liu, L.; Gray, J.M.; Melaas, E.K.; Friedl, M.A. Long-term continuity in land surface phenology measurements: A comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sens. Environ. 2019, 226, 74–92. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- De Oliveira, G.; Brunsell, N.A.; Moraes, E.C.; Bertani, G.; Dos Santos, T.V.; Shimabukuro, Y.E.; Aragão, L.E.O.C. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors 2016, 16, 956. [Google Scholar] [CrossRef] [PubMed]
- Waring, A.M.; Ghent, D.; Perry, M.; Anand, J.S.; Veal, K.L.; Remedios, J. Regional climate trend analyses for Aqua MODIS land surface temperatures. Int. J. Remote Sens. 2023, 44, 4989–5032. [Google Scholar] [CrossRef]
- Vargas Zeppetello, L.R.; Parsons, L.A.; Spector, J.T.; Naylor, R.L.; Battisti, D.S.; Masuda, Y.J.; Wolff, N.H. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 2020, 15, 084012. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Jimenez, J.C.; Sobrino, J.A. LST retrieval algorithm adapted to the amazon evergreen forests using MODIS data. Remote Sens. Environ. 2018, 204, 401–411. [Google Scholar] [CrossRef]
- Miranda, V.F.V.V.; Jimenez, J.C.; Dutra, E.; Trigo, I.F. Consistency assessment of latent heat flux and observational datasets over the amazon basin. Environ. Res. Lett. 2024, 19, 054044. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; van Leeuwen, W.; Miura, T.; Glenn, E. MODIS vegetation indices. In Land Remote Sensing and Global Environmental Change; Springer: New York, NY, USA, 2010; pp. 579–602. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS collection 6 land cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Lee, J.; Wong, D.W.S. Statistical Analysis with ArcView GIS; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.; Tejada, G.; Aragão, L.E.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Baker, I.T.; Harper, A.B.; da Rocha, H.R.; Denning, A.S.; Araújo, A.C.; Borma, L.S.; Freitas, H.C.; Goulden, M.L.; Manzi, A.O.; Miller, S.D.; et al. Surface ecophysiological behavior across vegetation and moisture gradients in tropical south america. Agric. For. Meteorol. 2013, 182–183, 177–188. [Google Scholar] [CrossRef]
- Bela, M.M.; Longo, K.M.; Freitas, S.R.; Moreira, D.S.; Beck, V.; Wofsy, S.C.; Gerbig, C.; Wiedemann, K.; Andreae, M.O.; Artaxo, P. Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons. Atmos. Chem. Phys. 2015, 15, 757–782. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Braswell, B.; Linder, E.; Ollinger, S.; Smith, M.; Jenkins, J.P.; Baret, F.; Richardson, A.D.; More III, B.; et al. Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data. Remote Sens. Environ. 2006, 105, 189–203. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Sobrino, J.A.; Malhi, Y.; Schrier, G.v.d. Record-breaking warming and extreme drought in the amazon rainforest during the course of el niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.F.; Gomes, H.B.; Silva, M.C.L.; Zhou, L. The most extreme heat waves in Amazonia happened under extreme dryness. Clim. Dyn. 2022, 59, 1–15. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Libonati, R.; Peres, L.F. Droughts Over Amazonia in 2005, 2010, and 2015: A Cloud Cover Perspective. Front. Earth Sci. 2018, 6, 227. [Google Scholar] [CrossRef]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Monteiro dos Santos, D.; Rodrigues, J.A.; Russo, A.; Peres, L.F.; Narcizo, L.; Gomes, M.E.R.; Rodrigues, A.P.; et al. Drought–heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review. Ann. N. Y. Acad. Sci. 2022, 1517, 44–62. [Google Scholar] [CrossRef]
- Liu, Y.Y.; van Dijk, A.I.J.M.; Meir, P.; McVicar, T.R. Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought. Biogeosciences 2024, 21, 2273–2295. [Google Scholar] [CrossRef]
- She, X.; Li, Y.; Jiao, W.; Sun, Y.; Ni, X.; Zuo, Z.; Knyazikhin, Y.; Myneni, R.B. Varied responses of amazon forests to the 2005, 2010, and 2015/2016 droughts inferred from multi-source satellite data. Agric. For. Meteorol. 2024, 353, 110051. [Google Scholar] [CrossRef]
- Fonseca, L.D.M.; Dalagnol, R.; Malhi, Y.; Rifai, S.W.; Costa, G.B.; Silva, T.S.F.; Da Rocha, H.R.; Tavares, I.B.; Borma, L.S. Phenology and Seasonal Ecosystem Productivity in an Amazonian Floodplain Forest. Remote Sens. 2019, 11, 1530. [Google Scholar] [CrossRef]
- Yang, J.; Tian, H.; Pan, S.; Chen, G.; Zhang, B.; Dangal, S. Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Glob. Chang. Biol. 2018, 24, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO). State of the Climate in Latin America and the Caribbean 2023, WMO-No. 1351, Geneva, Switzerland. 2024. Available online: https://library.wmo.int/idurl/4/68891 (accessed on 27 June 2024).
- Morton, D.; Nagol, J.; Carabajal, C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Sellers, P.J.; Hall, F.G.; Wang, Y. Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter. Remote Sens. Environ. 2012, 127, 370–384. [Google Scholar] [CrossRef]
- Dalagnol, R.; Wagner, F.H.; Galvão, L.S.; Aragão, L.E.O.C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America (Versión v1) [Data set]. Zenodo 2019, 10, 5281. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.; Andela, N.; Werf, G.; Giglio, L.; Randerson, J. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Chang. 2017, 7, 906–911. [Google Scholar] [CrossRef]
- Moreira, R.M.; dos Santos, B.C.; Biggs, T.; de Sales, F.; Sieber, S. Identifying clusters of precipitation for the Brazilian Legal Amazon based on magnitude of trends and its correlation with sea surface temperature. Sci. Rep. 2024, 14, 14067. [Google Scholar] [CrossRef]
- Butt, E.W.; Baker, J.C.A.; Bezerra, F.G.S.; von Randow, C.; Aguiar, A.P.D.; Spracklen, D.V. Amazon deforestation causes strong regional warming. Proc. Natl. Acad. Sci. USA 2023, 120, e2309123120. [Google Scholar] [CrossRef]
- Arias, P.A.; Fu, R.; Vera, C.S.; Rojas, M. A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim. Dyn. 2015, 45, 3183–3203. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Arias, P.A.; Moron, V.; Junquas, C.; Segura, H.; Sierra-Perez, J.; Wongchuig, S.; Condom, T. Recent changes in the atmospheric circulation patterns during the dry-to-wet transition season in south tropical South America (1979–2020): Impacts on precipitation and fire season. J. Clim. 2021, 34, 9025–9042. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Stark, S.C.; Nobre, A.D.; Cuartas, L.A.; Amore, D.J.; Restrepo-Coupe, N.; Smith, M.N.; Chitra-Tarak, R.; Ko, H.; Nelson, B.W.; et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 2024, 631, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.A. Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earth’s Future 2020, 8, e2020EF001608. [Google Scholar] [CrossRef]
- Agudelo, J.; Espinoza, J.C.; Junquas, C.; Arias, P.A.; Sierra, J.P.; Olmo, M.E. Future projections of low-level atmospheric circulation patterns over South Tropical South America: Impacts on precipitation and Amazon dry season length. J. Geophys. Res. Atmos. 2023, 128, e2023JD038658. [Google Scholar] [CrossRef]
- Bottino, M.J.; Nobre, P.; Giarolla, E.; da Silva Junior, M.B.; Capistrano, V.B.; Malagutti, M.; Tamaoki, J.N.; Alves de Oliveira, B.F.; Nobre, C.A. Amazon savannization and climate change are projected to increase dry season length and temperature extremes over brazil. Sci. Rep. 2024, 14, 5131. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Garcia-Carreras, L.; Buermann, W.; Castilho de Souza, D.; Marsham, J.H.; Kubota, P.Y.; Gloor, M.; Coelho, C.A.S.; Spracklen, D.V. Robust amazon precipitation projections in climate models that capture realistic land–atmosphere interactions. Environ. Res. Lett. 2021, 16, 074002. [Google Scholar] [CrossRef]
- Commar, L.F.S.; Abrahão, G.M.; Costa, M.H. A possible deforestation-induced synoptic-scale circulation that delays the rainy season onset in amazonia. Environ. Res. Lett. 2023, 18, 044041. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Dominguez, F.; Yang, Z.; Chug, D.; Nieto, R.; Gimeno, L.; Miguez-Macho, G. Changes in south american hydroclimate under projected amazonian deforestation. Ann. N. Y. Acad. Sci. 2020, 1472, 104–122. [Google Scholar] [CrossRef]
- Beveridge, C.F.; Espinoza, J.C.; Athayde, S.; Correa, S.B.; Couto, T.B.A.; Heilpern, S.A.; Jenkins, C.N.; Piland, N.C.; Utsunomiya, R.; Wongchuig, S.; et al. The Andes–Amazon–Atlantic pathway: A foundational hydroclimate system for social–ecological system sustainability. Proc. Natl. Acad. Sci. USA 2024, 121, e2306229121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, J.C.; Miranda, V.; Trigo, I.; Libonati, R.; Albuquerque, R.; Peres, L.F.; Espinoza, J.-C.; Marengo, J.A. Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023. Remote Sens. 2024, 16, 2519. https://doi.org/10.3390/rs16142519
Jiménez JC, Miranda V, Trigo I, Libonati R, Albuquerque R, Peres LF, Espinoza J-C, Marengo JA. Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023. Remote Sensing. 2024; 16(14):2519. https://doi.org/10.3390/rs16142519
Chicago/Turabian StyleJiménez, Juan Carlos, Vitor Miranda, Isabel Trigo, Renata Libonati, Ronaldo Albuquerque, Leonardo F. Peres, Jhan-Carlo Espinoza, and José Antonio Marengo. 2024. "Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023" Remote Sensing 16, no. 14: 2519. https://doi.org/10.3390/rs16142519
APA StyleJiménez, J. C., Miranda, V., Trigo, I., Libonati, R., Albuquerque, R., Peres, L. F., Espinoza, J. -C., & Marengo, J. A. (2024). Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023. Remote Sensing, 16(14), 2519. https://doi.org/10.3390/rs16142519