Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies
Abstract
:1. Introduction
- What accuracy might be expected when SAIL-based LAI and CCC retrieval algorithms are applied to decametric hyperspectral observations over two distinct types of heterogeneous canopy?
- Are some biophysical or biochemical variables better retrieved than others?
- To what extent can hybrid radiative transfer models improve retrieval accuracy over such environments?
2. Materials and Methods
2.1. Airborne Hyperspectral Data Acquisition
2.2. Airborne Hyperspectral Data Pre-Processing
2.3. Airborne Hyperspectral LAI and CCC Retrieval
- A modified version of SAIL, hereafter termed rowSAIL, which accounts for the structure of row-planted vegetation. As detailed in [37], the modifications in rowSAIL are equivalent to those made to the Markov Chain Canopy Reflectance Model (MCRM) under the Crop Reflectance Operational Models for Agriculture (CROMA) project, which resulted in the so-called rowMCRM model [39,42];
2.4. Validation of LAI and CCC Retrievals against In Situ Measurements
3. Results
3.1. Consistency of Atmospheric Correction Approaches
3.2. Characteristics of Airborne Hyperspectral and In Situ LAI, LCC, and CCC Data
3.3. Overall Performance of Turbid Medium and Hybrid Radiative Transfer Models
3.4. Performance of Turbid Medium and Hybrid Radiative Transfer Models by Campaign
4. Discussion
4.1. Suitability of SAIL-Based Retrieval Algorithms over Heterogeneous Canopies
4.2. Utility of Hybrid Radiative Transfer Models over Heterogeneous Canopies
4.3. Limitations and Perspectives for Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME). In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; Institute of Electrical and Electronics Engineers: Valencia, Spain, 2018; pp. 157–159. [Google Scholar]
- Stavros, E.N.; Chrone, J.; Cawse-Nicholson, K.; Freeman, A.; Glenn, N.F.; Guild, L.; Kokaly, R.; Lee, C.; Luvall, J.; Pavlick, R.; et al. Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s. J. Geophys. Res. Biogeosci. 2023, 128, e2021JG006471. [Google Scholar] [CrossRef]
- Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS Mission: A Low-Cost Smallsat for Hyperspectral Multiangle Observations of the Earth Surface and Atmosphere. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1512–1520. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Measuring Leaf Area Index of Plant Canopies with Branch Architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wenzel, O.; Buschmann, C.; Gitelson, A. Plant Stress Detection by Reflectance and Fluorescence. Ann. N. Y. Acad. Sci. 1998, 851, 271–285. [Google Scholar] [CrossRef]
- Ogutu, B.O.; Dash, J.; Dawson, T.P. Developing a Diagnostic Model for Estimating Terrestrial Vegetation Gross Primary Productivity Using the Photosynthetic Quantum Yield and Earth Observation Data. Glob. Chang. Biol. 2013, 19, 2878–2892. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical Remote Sensing and the Retrieval of Terrestrial Vegetation Bio-Geophysical Properties—A Review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of Leaf Area Index in Different Vegetation Types Using High Resolution Satellite Data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Dash, J.; Ogutu, B.O. Recent Advances in Space-Borne Optical Remote Sensing Systems for Monitoring Global Terrestrial Ecosystems. Prog. Phys. Geogr. 2016, 40, 322–351. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A Review on Reflective Remote Sensing and Data Assimilation Techniques for Enhanced Agroecosystem Modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining Vegetation Index and Model Inversion Methods for the Extraction of Key Vegetation Biophysical Parameters Using Terra and Aqua MODIS Reflectance Data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Liang, S. Recent Developments in Estimating Land Surface Biogeophysical Variables from Optical Remote Sensing. Prog. Phys. Geogr. 2007, 31, 501–516. [Google Scholar] [CrossRef]
- Roberts, G. A Review of the Application of BRDF Models to Infer Land Cover Parameters at Regional and Global Scales. Prog. Phys. Geogr. 2001, 25, 483–511. [Google Scholar] [CrossRef]
- Atzberger, C.; Richter, K.; Vuolo, F.; Darvishzadeh, R.; Schlerf, M. Why Confining to Vegetation Indices? Exploiting the Potential of Improved Spectral Observations Using Radiative Transfer Models. Remote Sens. Agric. Ecosyst. Hydrol. XIII 2011, 8174, 81740Q. [Google Scholar] [CrossRef]
- Camacho, F.; Fuster, B.; Li, W.; Weiss, M.; Ganguly, S.; Lacaze, R.; Baret, F. Crop Specific Algorithms Trained over Ground Measurements Provide the Best Performance for GAI and FAPAR Estimates from Landsat-8 Observations. Remote Sens. Environ. 2021, 260, 112453. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural Network Estimation of LAI, FAPAR, FCover and LAIxCab, from Top of Canopy MERIS Reflectance Data: Principles and Validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Kimes, D.S.; Knyazikhin, Y.; Privette, J.L.; Abuelgasim, A.A.; Gao, F. Inversion Methods for Physically-based Models. Remote Sens. Rev. 2000, 18, 381–439. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal Modalities for Radiative Transfer-Neural Network Estimation of Canopy Biophysical Characteristics: Evaluation over an Agricultural Area with CHRIS/PROBA Observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Reflectance Data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Wocher, M.; Berger, K.; Danner, M.; Mauser, W.; Hank, T. RTM-Based Dynamic Absorption Integrals for the Retrieval of Biochemical Vegetation Traits. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102219. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Efficient RTM-Based Training of Machine Learning Regression Algorithms to Quantify Biophysical & Biochemical Traits of Agricultural Crops. ISPRS J. Photogramm. Remote Sens. 2021, 173, 278–296. [Google Scholar] [CrossRef]
- Tagliabue, G.; Boschetti, M.; Bramati, G.; Candiani, G.; Colombo, R.; Nutini, F.; Pompilio, L.; Rivera-Caicedo, J.P.; Rossi, M.; Rossini, M.; et al. Hybrid Retrieval of Crop Traits from Multi-Temporal PRISMA Hyperspectral Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 187, 362–377. [Google Scholar] [CrossRef]
- Pascual-Venteo, A.B.; Portalés, E.; Berger, K.; Tagliabue, G.; Garcia, J.L.; Pérez-Suay, A.; Rivera-Caicedo, J.P.; Verrelst, J. Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data. Remote Sens. 2022, 14, 2448. [Google Scholar] [CrossRef]
- Candiani, G.; Tagliabue, G.; Panigada, C.; Verrelst, J.; Picchi, V.; Rivera Caicedo, J.P.; Boschetti, M. Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission. Remote Sens. 2022, 14, 1792. [Google Scholar] [CrossRef]
- Verhoef, W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: The SAIL Model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D’Urso, G. Experimental Assessment of the Sentinel-2 Band Setting for RTM-Based LAI Retrieval of Sugar Beet and Maize. Can. J. Remote Sens. 2009, 35, 230–247. [Google Scholar] [CrossRef]
- Brown, L.A.; Ogutu, B.O.; Dash, J. Estimating Forest Leaf Area Index and Canopy Chlorophyll Content with Sentinel-2: An Evaluation of Two Hybrid Retrieval Algorithms. Remote Sens. 2019, 11, 1752. [Google Scholar] [CrossRef]
- Brown, L.A.; Fernandes, R.; Djamai, N.; Meier, C.; Gobron, N.; Morris, H.; Canisius, F.; Bai, G.; Lerebourg, C.; Lanconelli, C.; et al. Validation of Baseline and Modified Sentinel-2 Level 2 Prototype Processor Leaf Area Index Retrievals over the United States. ISPRS J. Photogramm. Remote Sens. 2021, 175, 71–87. [Google Scholar] [CrossRef]
- Brown, L.A.; Dash, J.; Lidon, A.L.; Lopez-Baeza, E.; Dransfeld, S. Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2244–2251. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, R.; Atzberger, C.; Li, F.; Loiselle, S.; Luo, J. Estimating Forest FAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM. Remote Sens. 2015, 7, 7425–7446. [Google Scholar] [CrossRef]
- Meggio, F.; Zarco-Tejada, P.J.; Miller, J.R.; Martín, P.; González, M.R.; Berjón, A. Row Orientation and Viewing Geometry Effects on Row-Structured Vine Crops for Chlorophyll Content Estimation. Can. J. Remote Sens. 2008, 34, 220–234. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping Leaf Chlorophyll Content from Sentinel-2 and RapidEye Data in Spruce Stands Using the Invertible Forest Reflectance Model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C. Inversion of a Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral Remote Sensing Data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Lopez-Baeza, E.; Antolin, C.; Belda, F.; Carbo, E.; Coll, A.; Estrela, T.; Fernández, R.; Fidalgo, A.; Gabaldo, O.; Juglea, S.; et al. SMOS Land Validation Activities at the Valencia Anchor Station. In Proceedings of the XV Congreso de la Asociación Española de Teledetección, Madrid, Spain, 22–24 October 2013; Instituto Nacional de Tecnica Aeroespacia: Torrejón de Ardoz, Spain, 2013. [Google Scholar]
- Specim AisaFENIX Hyperspectral Sensor. Available online: http://www.specim.fi/hyperspectral-remote-sensing/ (accessed on 24 August 2018).
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and Radiometric Calibration of the Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef]
- Hueni, A.; Eastwood, M.; Meiller, C.; Werfeli, M.; Kuehnle, H.; Green, R.; Schaepman, M.; Nieke, J.; Rast, M. Joint NASA and ESA Imaging Spectrometer Airborne Campaign to Support SBG and CHIME. In Proceedings of the AGU Fall Meeting 2021, New Orleans, LA, USA, 13–17 December 2021; American Geophysical Union: New Orleans, LA, USA, 2021; p. GC13A–06. [Google Scholar]
- Thompson, D.R.; Natraj, V.; Green, R.O.; Helmlinger, M.C.; Gao, B.-C.; Eastwood, M.L. Optimal Estimation for Imaging Spectrometer Atmospheric Correction. Remote Sens. Environ. 2018, 216, 355–373. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.J.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L.; et al. MODTRAN5: A Reformulated Atmospheric Band Model with Auxiliary Species and Practical Multiple Scattering Options. In Proceedings of the 2004 SPIE International Symposium on Defense and Security, Kissimmee, FL, USA, 12–16 April 2004; Shen, S.S., Lewis, P.E., Eds.; Society of Photo-Optical Instrumentation Engineers: Orlando, FL, USA, 2004. [Google Scholar]
- Wilson, R.T.; Milton, E.J.; Nield, J.M. Are Visibility-Derived AOT Estimates Suitable for Parameterizing Satellite Data Atmospheric Correction Algorithms? Int. J. Remote Sens. 2015, 36, 1675–1688. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Takao, G. Empirical Methods to Compensate for a View-Angle-Dependent Brightness Gradient in AVIRIS Imagery. Remote Sens. Environ. 1997, 62, 277–291. [Google Scholar] [CrossRef]
- Warren, M.A.; Taylor, B.H.; Grant, M.G.; Shutler, J.D. Data Processing of Remotely Sensed Airborne Hyperspectral Data Using the Airborne Processing Library (APL): Geocorrection Algorithm Descriptions and Spatial Accuracy Assessment. Comput. Geosci. 2014, 64, 24–34. [Google Scholar] [CrossRef]
- Atzberger, C. Development of an Invertible Forest Reflectance Model the INFORM-Model. In Proceedings of the 20th EARSeL Symposium, Dresden, Germany, 14–16 June 2000; Buchroithner, Ed.; European Association of Remote Sensing Laboratories: Dresden, Germany, 2000; pp. 39–44. [Google Scholar]
- Adams, J.; Lewis, P.; Disney, M. Decoupling Canopy Structure and Leaf Biochemistry: Testing the Utility of Directional Area Scattering Factor (DASF). Remote Sens. 2018, 10, 1911. [Google Scholar] [CrossRef]
- Ma, X.; Wang, T.; Lu, L. A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops. Remote Sens. 2020, 12, 1290. [Google Scholar] [CrossRef]
- Huang, H. Accelerated RAPID Model Using Heterogeneous Porous Objects. Remote Sens. 2018, 10, 1264. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef]
- Rivera, J.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model. Remote Sens. 2013, 5, 3280–3304. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 257–269. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Brown, L.A.; Camacho, F.; García-Santos, V.; Origo, N.; Fuster, B.; Morris, H.; Pastor-Guzman, J.; Sánchez-Zapero, J.; Morrone, R.; Ryder, J.; et al. Fiducial Reference Measurements for Vegetation Bio-Geophysical Variables: An End-to-End Uncertainty Evaluation Framework. Remote Sens. 2021, 13, 3194. [Google Scholar] [CrossRef]
- Fernandes, R.; Plummer, S.; Nightingale, J.; Baret, F.; Camacho, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; et al. Global Leaf Area Index Product Validation Good Practices. In Best Practice for Satellite-Derived Land Product Validation; Fernandes, R., Plummer, S., Nightingale, J., Eds.; Land Product Validation Subgroup (Committee on Earth Observation Satellites Working Group on Calibration and Validation): Sioux Falls, SD, USA, 2014. [Google Scholar]
- Brown, L.A.; Morris, H.; Leblanc, S.; Bai, G.; Lanconelli, C.; Gobron, N.; Meier, C.; Dash, J. HemiPy: A Python Module for Automated Estimation of Forest Biophysical Variables and Uncertainties from Digital Hemispherical Photographs. Methods Ecol. Evol. 2023, 14, 2329–2340. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. CAN-EYE V6.4.91 User Manual; Institut National de la Recherche Agronomique: Avignon, France, 2017. [Google Scholar]
- Brown, L.A.; Williams, O.; Dash, J. Calibration and Characterisation of Four Chlorophyll Meters and Transmittance Spectroscopy for Non-Destructive Estimation of Forest Leaf Chlorophyll Concentration. Agric. For. Meteorol. 2022, 323, 109059. [Google Scholar] [CrossRef]
- Vuolo, F.; Dash, J.; Curran, P.J.; Lajas, D.; Kwiatkowska, E. Methodologies and Uncertainties in the Use of the Terrestrial Chlorophyll Index for the Sentinel-3 Mission. Remote Sens. 2012, 4, 1112–1133. [Google Scholar] [CrossRef]
- Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.P.W.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surv. Geophys. 2019, 40, 515–551. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Fernandes, R.; Brown, L.; Canisius, F.; Dash, J.; He, L.; Hong, G.; Huang, L.; Le, N.Q.; MacDougall, C.; Meier, C.; et al. Validation of Simplified Level 2 Prototype Processor Sentinel-2 Fraction of Canopy Cover, Fraction of Absorbed Photosynthetically Active Radiation and Leaf Area Index Products over North American Forests. Remote Sens. Environ. 2023, 293, 113600. [Google Scholar] [CrossRef]
- Fernandes, R.; Djamai, N.; Harvey, K.; Hong, G.; MacDougall, C.; Shah, H.; Sun, L. Evidence of a Bias-Variance Trade off When Correcting for Bias in Sentinel 2 Forest LAI Retrievals Using Radiative Transfer Models. Remote Sens. Environ. 2024, 305, 114060. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Jay, S.; Wei, S.; Zhao, N.; Comar, A.; Lopez-Lozano, R.; De Solan, B.; Yu, Q.; Wu, W.; et al. Daily Monitoring of Effective Green Area Index and Vegetation Chlorophyll Content from Continuous Acquisitions of a Multi-Band Spectrometer over Winter Wheat. Remote Sens. Environ. 2024, 300, 113883. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Colombo, R.; Meroni, M.; Marchesi, A.; Busetto, L.; Rossini, M.; Giardino, C.; Panigda, C. Estimation of Leaf and Canopy Water Content in Poplar Plantations by Means of Hyperspectral Indices and Inverse Modeling. Remote Sens. Environ. 2008, 112, 1820–1834. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating Canopy Water Content Using Hyperspectral Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Rollin, E.M.; Milton, E.J. Processing of High Spectral Resolution Reflectance Data for the Retrieval of Canopy Water Content Information. Remote Sens. Environ. 1998, 65, 86–92. [Google Scholar] [CrossRef]
- Jakimow, B.; Janz, A.; Thiel, F.; Okujeni, A.; Hostert, P.; van der Linden, S. EnMAP-Box: Imaging Spectroscopy in QGIS. SoftwareX 2023, 23, 101507. [Google Scholar] [CrossRef]
- Hank, T.; Berger, K.; Wocher, M.; Danner, M.; Mauser, W. Introducing the Potential of the EnMAP-Box for Agricultural Applications Using DESIS and PRISMA Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; Institute of Electrical and Electronics Engineers: Brussels, Belgium, 2021; pp. 467–470. [Google Scholar]
Campaign | Date | Instrument | Operator | Spectral Range (nm) | FWHM (nm) | FOV (°) | Spatial Pixels | Spectral Pixels | Flight Lines | Spatial Resolution (m) |
---|---|---|---|---|---|---|---|---|---|---|
Valencia Anchor Station 2017 | 17 June | Specim AisaFENIX | NERC ARF | 380– 2500 | 3.5 nm (VNIR), 12 nm (SWIR) | 32 | 384 | 623 | 21 | 2 |
Wytham Woods 2018 | 3 July | 622 | 13 | |||||||
Wytham Woods 2021 | 16 July | NASA JPL AVIRIS-NG | UZH ARES | 380– 2510 | 5 nm | 36 | 640 | 480 | 2 | 3 |
Model | Parameter | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
PROSPECT | Structural parameter (N) | 1.62 | 1.62 | - | - |
Chlorophyll a + b (µg cm−2) | 30 | 45 | 35 | 5 | |
Dry matter (g cm−2) | 0.0035 | 0.0035 | - | - | |
Equivalent water thickness (g cm−2) | 0.025 | 0.025 | - | - | |
Common to SAIL and rowSAIL | Average leaf angle (°) | 45 | 45 | - | - |
LAI | 0.0 | 3.0 | 1.5 | 0.5 | |
Hotspot parameter | 0.083 | 0.083 | - | - | |
Solar zenith angle (°) | 22 | 43 | - | - | |
Observer zenith angle (°) | 0 | 16 | - | - | |
Relative azimuth angle (°) | 97 | 133 | - | - | |
Fraction of diffuse radiation | 0.15 | 0.15 | - | - | |
Soil brightness coefficient | 0.6 | 1.4 | 1 | 0.5 | |
Specific to rowSAIL | Row height (m) | 1.2 | 1.8 | - | - |
Row width (m) | 0.6 | 1.3 | - | - | |
Visible soil strip (m) | 1.5 | 3.0 | 2.4 | 0.3 | |
Difference between solar azimuth angle and row direction (°) | 0 | 126 | 50 | 43 |
Model | Parameter | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
PROSPECT | Structural parameter (N) | 1.5 | 1.7 | - | - |
Chlorophyll a + b (µg cm−2) | 0 | 60 | 30 | 20 | |
Dry matter (g cm−2) | 0.004 | 0.020 | - | - | |
Equivalent water thickness (g cm−2) | 0.01 | 0.02 | - | - | |
Common to SAIL and INFORM | Average leaf angle (°) | 55 | 55 | - | - |
LAI | 0.0 | 8.0 | 5.0 | 0.5 | |
Hotspot parameter | 1.4 | 1.4 | - | - | |
Solar zenith angle (°) | 30 | 42 | - | - | |
Observer zenith angle (°) | 0 | 16 | - | - | |
Relative azimuth angle (°) | 120 | 162 | - | - | |
Fraction of diffuse radiation | 0.1 | 0.1 | - | - | |
Soil brightness coefficient | 0.5 | 0.5 | - | - | |
Specific to INFORM | Understory LAI | 0.0 | 5.0 | 1.0 | 0.5 |
Stem density (ha−1) | 0 | 1130 | - | - | |
Canopy height (m) | 10 | 20 | - | - | |
Crown diameter (m) | 6 | 14 | 8 | 4 |
Sampled ESUs | ||||||
---|---|---|---|---|---|---|
Campaign | Dates | LAI | LCC | ESU Dimensions | Within-ESU Sampling Locations | Reference |
Valencia Anchor Station 2017 | 14–16 June | 45 | 40 | 40 m × 40 m | 10–20 | [37] |
Wytham Woods 2018 | 3–5 July | 47 | 30 | 20 m × 20 m | 13–15 | [63] |
Wytham Woods 2021 | 20–23 July | 29 | 29 | 20 m × 20 m | 13–15 | This study |
ATCOR-4 | FLAASH | |||||
---|---|---|---|---|---|---|
Target | RMSD | NRMSD (%) | Bias | RMSD | NRMSD (%) | Bias |
White tarpaulin | 0.05 | 7.66 | −0.03 | 0.07 | 10.53 | −0.03 |
Grey tarpaulin | 0.01 | 11.64 | 0.01 | 0.01 | 14.00 | 0.01 |
Black tarpaulin | 0.01 | 15.85 | 0.00 | 0.02 | 55.05 | 0.02 |
Artificial football field | 0.01 | 23.04 | −0.01 | 0.01 | 21.03 | −0.01 |
Valencia Anchor Station 2017 | Wytham Woods 2018 | Wytham Woods 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
Statistic | LAI | LCC (g m−2) | CCC (g m−2) | LAI | LCC (g m−2) | CCC (g m−2) | LAI | LCC (g m−2) | CCC (g m−2) |
Minimum | 0.41 | 0.21 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum | 3.26 | 0.67 | 0.82 | 7.69 | 0.58 | 4.27 | 8.77 | 0.69 | 4.84 |
Mean | 1.37 | 0.33 | 0.41 | 4.35 | 0.31 | 1.57 | 4.22 | 0.28 | 1.60 |
Standard deviation | 0.68 | 0.09 | 0.17 | 1.92 | 0.16 | 1.06 | 2.78 | 0.19 | 1.43 |
Valencia Anchor Station 2017 | Wytham Woods 2018 | Wytham Woods 2021 | |||||
---|---|---|---|---|---|---|---|
Model | Statistic | LAI | CCC (g m−2) | LAI | CCC (g m−2) | LAI | CCC (g m−2) |
SAIL | r2 | 0.05 | 0.00 | 0.55 | 0.56 | 0.73 | 0.53 |
RMSD | 0.92 | 0.27 | 1.74 | 1.12 | 2.15 | 1.27 | |
NRMSD (%) | 67.05 | 64.31 | 40.05 | 71.59 | 50.87 | 79.15 | |
Bias | −0.64 | −0.17 | 0.96 | 0.89 | 0.82 | 0.74 | |
rowSAIL and INFORM | r2 | 0.02 | 0.01 | 0.64 | 0.58 | 0.76 | 0.62 |
RMSD | 0.88 | 0.30 | 1.16 | 0.82 | 1.64 | 0.87 | |
NRMSD (%) | 64.44 | 73.15 | 26.70 | 52.08 | 38.85 | 54.23 | |
Bias | −0.13 | 0.03 | −0.16 | 0.42 | −0.78 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, L.A.; Morris, H.; MacLachlan, A.; D’Adamo, F.; Adams, J.; Lopez-Baeza, E.; Albero, E.; Martínez, B.; Sánchez-Ruiz, S.; Campos-Taberner, M.; et al. Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies. Remote Sens. 2024, 16, 2066. https://doi.org/10.3390/rs16122066
Brown LA, Morris H, MacLachlan A, D’Adamo F, Adams J, Lopez-Baeza E, Albero E, Martínez B, Sánchez-Ruiz S, Campos-Taberner M, et al. Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies. Remote Sensing. 2024; 16(12):2066. https://doi.org/10.3390/rs16122066
Chicago/Turabian StyleBrown, Luke A., Harry Morris, Andrew MacLachlan, Francesco D’Adamo, Jennifer Adams, Ernesto Lopez-Baeza, Erika Albero, Beatriz Martínez, Sergio Sánchez-Ruiz, Manuel Campos-Taberner, and et al. 2024. "Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies" Remote Sensing 16, no. 12: 2066. https://doi.org/10.3390/rs16122066
APA StyleBrown, L. A., Morris, H., MacLachlan, A., D’Adamo, F., Adams, J., Lopez-Baeza, E., Albero, E., Martínez, B., Sánchez-Ruiz, S., Campos-Taberner, M., Lidón, A., Lull, C., Bautista, I., Clewley, D., Llewellyn, G., Xie, Q., Camacho, F., Pastor-Guzman, J., Morrone, R., ... Dash, J. (2024). Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies. Remote Sensing, 16(12), 2066. https://doi.org/10.3390/rs16122066