Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.2.1. Data Preprocessing
2.2.2. Parameter Adjustment
2.3. Supervised Machine Learning Algorithms
2.4. Evaluation Indicators
3. Result
3.1. Daytime Results
3.2. Nighttime Results
4. Discussion
4.1. Performance Analysis of Supervised Learning Algorithms
4.2. Diurnal Variation in Phytoplankton Layers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dekshenieks, M.; Donaghay, P.; Sullivan, J.; Rines, J.; Osborn, T.; Twardowski, M. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser. 2001, 223, 61–71. [Google Scholar] [CrossRef]
- Berdalet, E.; McManus, M.A.; Ross, O.N.; Burchard, H.; Chavez, F.P.; Jaffe, J.S.; Jenkinson, I.R.; Kudela, R.; Lips, I.; Lips, U.; et al. Understanding harmful algae in stratified systems: Review of progress and future directions. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 101, 4–20. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Gentili, B.; Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 2010, 24, GB3016. [Google Scholar] [CrossRef]
- Righetti, D.; Vogt, M.; Gruber, N.; Psomas, A.; Zimmermann, N.E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 2019, 5, eaau6253. [Google Scholar] [CrossRef] [PubMed]
- Ryan-Keogh, T.J.; Thomalla, S.J.; Monteiro, P.M.S.; Tagliabue, A. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton. Science 2023, 379, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.T.; Pahlow, M.; Schartau, M.; Li, N.; Oschlies, A. Effects of phytoplankton physiology on global ocean biogeochemistry and climate. Sci. Adv. 2023, 9, eadg1725. [Google Scholar] [CrossRef]
- Moore, T.S.; Churnside, J.H.; Sullivan, J.M.; Twardowski, M.S.; Nayak, A.R.; Mcfarland, M.N.; Stockley, N.D.; Gould, R.W.; Johengen, T.H.; Ruberg, S.A. Vertical distributions of blooming cyanobacteria populations in a freshwater lake from LIDAR observations. Remote Sens. Environ. 2019, 225, 347–367. [Google Scholar] [CrossRef]
- Boyce, D.G.; Lewis, M.R.; Worm, B. Global phytoplankton decline over the past century. Nature 2010, 466, 591–596. [Google Scholar] [CrossRef]
- Lunven, M.; Guillaud, J.F.; Youénou, A.; Crassous, M.P.; Berric, R.; Gall, E.L.; Kérouel, R.; Labry, C.; Aminot, A. Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new Fine Scale Sampler. Estuar. Coast. Shelf Sci. 2005, 65, 94–108. [Google Scholar] [CrossRef]
- Twardowski, M.S.; Sullivan, J.M.; Donaghay, P.L.; Zaneveld, J.R.V. Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9. J. Atmos. Ocean. Technol. 1999, 16, 691–707. [Google Scholar] [CrossRef]
- Moline, M.A.; Benoit-Bird, K.J.; Robbins, I.C.; Schroth-Miller, M.; Waluk, C.M.; Zelenke, B. Integrated measurements of acoustical and optical thin layers II: Horizontal length scales. Cont. Shelf Res. 2010, 30, 29–38. [Google Scholar] [CrossRef]
- Prairie, J.C.; Franks, P.J.S.; Jaffe, J.S. Cryptic peaks: Invisible vertical structure in fluorescent particles revealed using a planar laser imaging fluorometer. Limnol. Oceanogr. 2010, 55, 1943–1958. [Google Scholar] [CrossRef]
- Churnside, J.H.; Sawada, K.; Okumura, T. A comparison of airborne LIDAR and echo sounder performance in fisheries. J. Mar. Acoust. Soc. Jpn. 2001, 28, 175–187. [Google Scholar]
- Roddewig, M.R.; Churnside, J.H.; Hauer, F.R.; Williams, J.; Bigelow, P.E.; Koel, T.M.; Shaw, J.A. Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake. Appl. Opt. 2018, 57, 4111–4116. [Google Scholar] [CrossRef] [PubMed]
- Churnside, J.H.; Marchbanks, R.D.; Lee, J.H.; Shaw, J.A.; Weidemann, A.; Donaghay, P.L. Airborne lidar detection and characterization of internal waves in a shallow fjord. J. Appl. Remote Sens. 2012, 6, 063611. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Liu, H.; Chen, P.; Mao, Z.; Pan, D. Iterative retrieval method for ocean attenuation profiles measured by airborne lidar. Appl. Opt. 2020, 59, C42–C51. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Pan, D. Ocean Optical Profiling in South China Sea Using Airborne LiDAR. Remote Sens. 2019, 11, 1826. [Google Scholar] [CrossRef]
- Churnside, J.H.; Marchbanks, R.D.; Vagle, S.; Bell, S.; Stabeno, P.J. Stratification, plankton layers, and mixing measured by airborne lidar in the Chukchi and Beaufort seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 177, 104742. [Google Scholar] [CrossRef]
- Churnside, J.; Donaghay, P. Thin scattering layers observed by airborne lidar. ICES J. Mar. Sci. 2009, 66, 778–789. [Google Scholar] [CrossRef]
- Mitra, K.; Churnside, J. Transient Radiative Transfer Equation Applied to Oceanographic Lidar. Appl. Opt. 1999, 38, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Churnside, J.H.; Tenningen, E.; Wilson, J.J. Comparison of data-processing algorithms for the lidar detection of mackerel in the Norwegian Sea. ICES J. Mar. Sci. 2009, 66, 1023–1028. [Google Scholar] [CrossRef]
- Hill, V.J.; Zimmerman, R.C. Estimates of primary production by remote sensing in the Arctic Ocean: Assessment of accuracy with passive and active sensors. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 1243–1254. [Google Scholar]
- Churnside, J.H.; Marchbanks, R.D. Subsurface plankton layers in the Arctic Ocean. Geophys. Res. Lett. 2015, 42, 4896–4902. [Google Scholar] [CrossRef]
- Churnside, J.; Marchbanks, R.; Marshall, N. Airborne Lidar Observations of a Spring Phytoplankton Bloom in the Western Arctic Ocean. Remote Sens. 2021, 13, 2512. [Google Scholar] [CrossRef]
- Zavalas, R.; Ierodiaconou, D.; Ryan, D.; Rattray, A.; Monk, J. Habitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR. Remote Sens. 2014, 6, 2154–2175. [Google Scholar] [CrossRef]
- Peng, C.; Cédric, J.; Zhang, Z.; Yan, H.; Zhihua, M.; Delu, P.; Tianyu, W.; Dong, L.; Yu, D. Vertical distribution of subsurface phytoplankton layer in South China Sea using airborne lidar. Remote Sens. Environ. 2021, 263, 112567. [Google Scholar] [CrossRef]
- Chen, P.; Jamet, C.; Liu, D. LiDAR Remote Sensing for Vertical Distribution of Seawater Optical Properties and Chlorophyll-a from the East China Sea to the South China Sea. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4207321. [Google Scholar] [CrossRef]
- Hang, L.; Peng, C.; Zhihua, M.; Delu, P. Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea. Opt. Express 2018, 26, 29134–29147. [Google Scholar] [CrossRef]
- Shangguan, M.; Yang, Z.; Lin, Z.; Weng, Z.; Sun, J. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range. Opt. Lett. 2024, 49, 626–629. [Google Scholar] [CrossRef]
- Shangguan, M.; Guo, Y.; Liao, Z. Shipborne single-photon fluorescence oceanic lidar: Instrumentation and inversion. Opt. Express 2024, 32, 10204–10218. [Google Scholar] [CrossRef] [PubMed]
- Churnside, J.H.; Thorne, R.E. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Appl. Opt. 2005, 44, 5504–5511. [Google Scholar] [CrossRef] [PubMed]
- Vannoy, T.C.; Belford, J.; Aist, J.N.; Rust, K.R.; Roddewig, M.R.; Churnside, J.H.; Shaw, J.A.; Whitaker, B.M. Machine learning-based region of interest detection in airborne lidar fisheries surveys. J. Appl. Remote Sens. 2021, 15, 038503. [Google Scholar] [CrossRef]
- Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Mehrotra, K.; Mohan, C.; Ranka, S. Elements of Artificial Neural Networks; The MIT Press: Cambridge, MA, USA, 1996. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874. [Google Scholar]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 185–197. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R. Experiments with a new boosting algorithm. In Proceedings of the International Conference on Machine Learning, International Conference on Machine Learning, Bari, Italy, 3–6 July 1996. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Van Hulse, J.; Khoshgoftaar, T.M.; Napolitano, A. Experimental perspectives on learning from imbalanced data. In Proceedings of the ICML ‘07 & ILP ‘07: The 24th Annual International Conference on Machine Learning Held in Conjunction with the 2007 International Conference on Inductive Logic Programming, Corvallis, OR, USA, 21–23 June 2007. [Google Scholar]
- Li, C.; Chiang, K.P.; Laws, E.A.; Liu, X.; Chen, J.; Huang, Y.; Chen, B.; Tsai, A.Y.; Huang, B. Quasi-Antiphase Diel Patterns of Abundance and Cell Size/Biomass of Picophytoplankton in the Oligotrophic Ocean. Geophys. Res. Lett. 2022, 49, e2022GL097753. [Google Scholar] [CrossRef]
- Selph, K.E.; Swalethorp, R.; Stukel, M.R.; Kelly, T.B.; Knapp, A.N.; Fleming, K.; Hernandez, T.; Landry, M.R. Phytoplankton community composition and biomass in the oligotrophic Gulf of Mexico. J. Plankton Res. 2021, 44, 618–637. [Google Scholar] [CrossRef]
- Biggs, D.C.; Ressler, P.H. Distribution and Abundance of Phytoplankton, Zooplankton, Ichthyoplankton, and Micronekton in the Deepwater Gulf of Mexico. Gulf Mex. Sci. 2018, 19, 2. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Zheng, D.; Zhao, H.; Zhou, Y.; Liu, D. Characteristics and Formation Conditions of Thin Phytoplankton Layers in the Northern Gulf of Mexico Revealed by Airborne Lidar. Remote Sens. 2022, 14, 4179. [Google Scholar] [CrossRef]
SVM | LDA | Neural Net | |||
---|---|---|---|---|---|
Lambda | Delta | Layer Size | |||
Regulation | [ridge, lasso] | Gamma | [0, 1] | Activation | [relu, sigmoid, tanh] |
FN cost | FN cost | ||||
Tree | RUSBoost | ||||
Max number of splits | Learning cycles | ||||
Min leaf size | Learning rate | ||||
Split criterion | [gid, deviance] | Max number of splits | |||
FN cost | Min leaf size | ||||
Split criterion | [gid, deviance] | ||||
FN cost |
Predicted Class Positive | Predicted Class Negative | |
---|---|---|
True class positive | True positive, TP | false positive, FP |
True class negative | False negative, FN | True negative, TN |
SVM | LDA | Neural Net | |||
---|---|---|---|---|---|
Lambda | 5.05 × 10−7 | Delta | 0a | Layer Size | 49 |
Regulation | Lasso | Gamma | 0a | Activation | relu |
FN cost | 20 | FN cost | 3 | Undersampling | 0.95 |
Undersampling | 0 | Undersampling | 0.95 | Label for ROL | 89 |
Label for ROL | 90 | Label for ROL | 60 | ||
Tree | RUSBoost | ||||
Max number of splits | 1.0067 | Learning cycles | 55.9864 | ||
Min leaf size | 323.1351 | Learning rate | 0.0010 | ||
Split criterion | Deviance | Max number of splits | 1.0367 × 103 | ||
FN cost | 20 | Min leaf size | 1.1993 × 103 | ||
Undersampling | 0.85 | Split criterion | Deviance | ||
Label for ROL | 1 | FN cost | 2 | ||
Undersampling | 0.5 | ||||
Label for ROL | 97 |
SVM | LDA | Neural Net | Tree | RUSBoost | ||
---|---|---|---|---|---|---|
Test | Precision | 0.0703 | 0.0730 | 0.2239 | 0.0693 | 0.1712 |
Recall | 0.9979 | 0.9698 | 0.5884 | 1 | 0.6513 | |
F3 | 0.4303 | 0.4351 | 0.5060 | 0.4268 | 0.5086 | |
Cross validation | Precision | 0.0626 | 0.0635 | 0.1979 | 0.0606 | 0.1611 |
Recall | 0.9866 | 0.9811 | 0.6002 | 1 | 0.6519 | |
F3 | 0.3986 | 0.4013 | 0.4988 | 0.3921 | 0.4996 |
SVM | LDA | Neural Net | Tree | RUSBoost | ||
---|---|---|---|---|---|---|
Test | Precision | 0.1121 | 0.1153 | 0.2273 | 0.1121 | 0.2011 |
Recall | 1 | 0.9872 | 0.8974 | 1 | 0.9359 | |
F3 | 0.5579 | 0.5620 | 0.6931 | 0.5579 | 0.6854 | |
Cross validation | Precision | 0.1140 | 0.1152 | 0.2333 | 0.1123 | 0.2077 |
Recall | 1 | 0.9968 | 0.8722 | 1 | 0.9105 | |
F3 | 0.5627 | 0.5646 | 0.6847 | 0.5586 | 0.6804 |
SVM | LDA | Neural Net | |||
---|---|---|---|---|---|
Lambda | 42.4824 | Delta | 0a | Layer Size | 44 |
Regulation | Lasso | Gamma | 0a | Activation | tanh |
FN cost | 18 | FN cost | 5 | Undersampling | 0.95 |
Undersampling | 0.95 | Undersampling | 0.95 | Label for ROL | 97 |
Label for ROL | 1 | Label for ROL | 63 | ||
Tree | RUSBoost | ||||
Max number of splits | 1.1258 | Learning cycles | 194.7356 | ||
Min leaf size | 234.8988 | Learning rate | 0.0010 | ||
Split criterion | Deviance | Max number of splits | 2.0308 × 103 | ||
FN cost | 19 | Min leaf size | 1.0448 | ||
Undersampling | 0.95 | Split criterion | Deviance | ||
Label for ROL | 1 | FN cost | 17 | ||
Undersampling | 0.7 | ||||
Label for ROL | 40 |
SVM | LDA | Neural Net | Tree | RUSBoost | ||
---|---|---|---|---|---|---|
Test | Precision | 0.0875 | 0.0878 | 0.2456 | 0.0875 | 0.3517 |
Recall | 1 | 0.9905 | 0.6910 | 1 | 0.6520 | |
F3 | 0.4896 | 0.4883 | 0.5849 | 0.4896 | 0.6007 | |
Cross validation | Precision | 0.0915 | 0.0921 | 0.2304 | 0.0915 | 0.3669 |
Recall | 1 | 0.9991 | 0.6816 | 1 | 0.6450 | |
F3 | 0.5017 | 0.5033 | 0.5700 | 0.5017 | 0.5996 |
SVM | LDA | Neural Net | Tree | RUSBoost | ||
---|---|---|---|---|---|---|
Test | Precision | 0.1509 | 0.1509 | 0.2721 | 0.1509 | 0.3348 |
Recall | 1 | 1 | 0.9487 | 1 | 0.9615 | |
F3 | 0.6399 | 0.6399 | 0.7598 | 0.6399 | 0.8099 | |
Cross validation | Precision | 0.1517 | 0.1518 | 0.2534 | 0.1517 | 0.3399 |
Recall | 1 | 1 | 0.9522 | 1 | 0.9299 | |
F3 | 0.6413 | 0.6415 | 0.7464 | 0.6413 | 0.7924 |
SVM | LDA | Neural Net | Tree | RUSBoost | ||
---|---|---|---|---|---|---|
Day | Undersampling | 402.83 | 1332.85 | 32,332.51 | 7094.32 | 20,309.72 |
Model hyperparamenters | 805.80 | 546.98 | 18,304.67 | 2195.04 | 38,902.10 | |
ROL label tuning | 120.68 | 30.79 | 807.27 | 14.10 | 1092.18 | |
total | 1329.31 | 1910.61 | 51,444.45 | 9303.46 | 60,304 | |
Night | Undersampling | 312.25 | 943.29 | 25,127.95 | 4973.33 | 24,755.18 |
Model hyperparamenters | 130.11 | 419.55 | 18,344.40 | 503.39 | 41,800.17 | |
ROL label tuning | 15.36 | 23.48 | 745.25 | 8.35 | 5916.52 | |
total | 457.72 | 1386.32 | 44,217.60 | 5485.07 | 72,471.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Chen, P.; Zhang, S. Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques. Remote Sens. 2024, 16, 1953. https://doi.org/10.3390/rs16111953
Zhong C, Chen P, Zhang S. Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques. Remote Sensing. 2024; 16(11):1953. https://doi.org/10.3390/rs16111953
Chicago/Turabian StyleZhong, Chunyi, Peng Chen, and Siqi Zhang. 2024. "Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques" Remote Sensing 16, no. 11: 1953. https://doi.org/10.3390/rs16111953
APA StyleZhong, C., Chen, P., & Zhang, S. (2024). Enhancing Subsurface Phytoplankton Layer Detection in LiDAR Data through Supervised Machine Learning Techniques. Remote Sensing, 16(11), 1953. https://doi.org/10.3390/rs16111953