Analyzing Spatiotemporal Variations and Driving Factors of Grassland in the Arid Region of Northwest China Surrounding the Tianshan Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. FVC Data
2.2.2. Climate Data
2.2.3. Socioeconomic Data
2.2.4. Additional Data
2.2.5. Data Processing
2.3. Study Method
2.3.1. Linear Regression
2.3.2. Theil–Sen Median Trend Analysis and Mann–Kendall Test
2.3.3. Hurst Index
2.3.4. Pearson Correlation
2.3.5. Structural Equation Model
3. Results
3.1. Spatial and Temporal Patterns of FVC during the Growing Season
3.2. Trend Analysis of FVC during the Growing Season
3.3. The Driving Factors of Vegetation Variations in the Tianshan Mountains
4. Discussion
4.1. Spatial Distribution and Variation of FVC during the Growing Season
4.2. Analysis of Driving Factors of the FVC Spatial Pattern
4.3. Limitations and Future Work
5. Conclusions
- (1)
- Grasslands in the Tianshan region exhibit a spatial pattern of high central values surrounded by lower ones, with the highest FVC observed in the Ili River Basin. The FVC demonstrates a fluctuating upward trend, increasing at a rate of 0.0017 per year, with distinct periodic variations across sub-regions.
- (2)
- The spatial trend of grassland FVC across the Tianshan Mountains shows a general improvement, with only 0.6% of the area experiencing severe degradation, primarily in the Ili River Basin. The Hurst index suggests that the persistence of grassland growth conditions in this region is weak, indicating potential degradation post-2020.
- (3)
- SEM analysis indicates that the diversity of grassland vegetation in the Xinjiang Tianshan region is the result of complex interactions among topographical, climatic, and human factors. The region’s topography acts as a natural barrier, accentuating environmental and urbanization differences between areas, which influence local key factors and thus, the distribution of FVC zones. Climatic factors, especially variations in precipitation and temperature, are critical in driving these spatial differences. In areas like the southern slope of the Tianshan Mountains and the Ili River Basin, where pastoralism is significant, a strong correlation exists between livestock numbers and grassland health.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhang, Z.; Tong, L.; Wang, Z.; Li, J. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [Google Scholar] [CrossRef]
- Gao, G.Z.; Wang, M.L.; Li, D.H.; Li, N.N.; Wang, J.Y.; Niu, H.H.; Meng, M.; Liu, Y.; Zhang, G.H.; Jie, D.M. Phytolith evidence for changes in the vegetation diversity and cover of a grassland ecosystem in Northeast China since the mid-Holocene. Catena 2023, 226, 107061. [Google Scholar] [CrossRef]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, J.Q.; Shen, X.J.; Liu, B.H.; Lu, X.G.; Jiang, M. Impacts of climate change on fractional vegetation coverage of temperate grasslands in China from 1982 to 2015. J. Environ. Manag. 2024, 350, 119694. [Google Scholar] [CrossRef]
- Han, H.; Yin, Y.; Zhao, Y.; Qin, F. Spatiotemporal Variations in Fractional Vegetation Cover and Their Responses to Climatic Changes on the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 2662. [Google Scholar] [CrossRef]
- Hussain, B.; Qureshi, N.A.; Buriro, R.A.; Qureshi, S.S.; Pirzado, A.A.; Saleh, T.A. Interdependence between temperature and precipitation: Modeling using copula method toward climate protection. Model. Earth Syst. Environ. 2022, 8, 2753–2766. [Google Scholar] [CrossRef]
- Saleh, T.A. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ. Technol. Innov. 2021, 24, 101821. [Google Scholar] [CrossRef]
- Huang, H.; Xi, G.; Ji, F.; Liu, Y.; Wang, H.; Xie, Y. Spatial and Temporal Variation in Vegetation Cover and Its Response to Topography in the Selinco Region of the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 4101. [Google Scholar] [CrossRef]
- Peng, D.L.; Zhang, B.; Wu, C.Y.; Huete, A.R.; Gonsamo, A.; Lei, L.P.; Ponce-Campos, G.E.; Liu, X.J.; Wu, Y.H. Country-level net primary production distribution and response to drought and land cover change. Sci. Total Environ. 2017, 574, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, G.; Ye, F.; Han, Q. Effects of grazing on net primary productivity, evapotranspiration and water use efficiency in the grasslands of Xinjiang, China. J. Arid Land 2018, 10, 588–600. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, D.; Xiao, J.; Liu, D.; Zhang, X.; Yang, X.; Ai, G. Climate and Anthropogenic Influences on the Spatiotemporal Change in Degraded Grassland in China. Environ. Eng. Sci. 2021, 38, 1065–1077. [Google Scholar] [CrossRef]
- Ge, Y.; Wu, N.; Abuduwaili, J.; Issanova, G. Assessment of spatiotemporal features and potential sources of atmospheric aerosols over the Tianshan Mountains in arid central Asia. Atmos. Environ. 2023, 294, 119502. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Cheng, L.; Zong, X.; Kang, S.; Ghafarpour, A.; Li, X.; Sun, H.; Fu, X.; Dong, J.; et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110279. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Sun, F.; Li, Z. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecol. Indic. 2021, 129, 107912. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Han, F.; Wang, Z.; Wang, C. NDVI-based vegetation dynamics and their response to recent climate change: A case study in the Tianshan Mountains, China. Environ. Earth Sci. 2016, 75, 1189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.-Y.; Liu, Y.; Zhang, M.; An, C.-B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. 2021, 11, 4870. [Google Scholar] [CrossRef]
- Yao, J.Q.; Chen, Y.N.; Zhao, Y.; Mao, W.Y.; Xu, X.B.; Liu, Y.; Yang, Q. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: A case study in Xinjiang, China. Theor. Appl. Climatol. 2018, 131, 1503–1515. [Google Scholar] [CrossRef]
- Gao, Q.-Z.; Li, Y.; Xu, H.-M.; Wan, Y.-F.; Jiangcun, W.-Z. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 199–209. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Ferreira, V.G.; Agutu, N.O. Hydrological controls on surface vegetation dynamics over West and Central Africa. Ecol. Indic. 2019, 103, 494–508. [Google Scholar] [CrossRef]
- Zhu, S.; Fang, X.; Hang, X.; Xie, X.; Sun, L.; Cao, L. Normalized difference vegetation index(NDVI)dynamics of grassland in Central Asia and its response to climate change and human activities. J. Desert Res. 2022, 42, 229–241. [Google Scholar]
- Duan, Y.; Luo, M.; Guo, X.; Cai, P.; Li, F. Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China. Sustainability 2021, 13, 1189. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Renison, D.; Tecco, P.A.; Gurvich, D.E.; Cabido, M. Predicting cover types in a mountain range with long evolutionary grazing history: A GIS approach. J. Biogeogr. 2008, 35, 538–551. [Google Scholar] [CrossRef]
- Shang, Z.H.; Gibb, M.J.; Leiber, F.; Ismail, M.; Ding, L.M.; Guo, X.S.; Long, R.J. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. Rangel. J. 2014, 36, 267–296. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, H.; Ling, H. Eco-service value evaluation based on eco-economic functional regionalization in a typical basin of northwest arid area, China. Environ. Earth Sci. 2014, 71, 3715–3726. [Google Scholar] [CrossRef]
- Ostendorf, B.; Reynolds, J.F. A model of arctic tundra vegetation derived from topographic gradients. Landsc. Ecol. 1998, 13, 187–201. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, J.; Tao, F.; Chen, Y.; Ding, H. The effect of terrain factors on rice production: A case study in Hunan Province. J. Geogr. Sci. 2019, 29, 287–305. [Google Scholar] [CrossRef]
- Emran, A. Assessing topographic controls on vegetation characteristics in Chittagong Hill Tracts (CHT) from remotely sensed data (vol 11C, pg 198, 2018). Remote Sens. Appl.-Soc. Environ. 2018, 11, 198–208. [Google Scholar]
- Gu, Z.N.; Zhang, Z.; Yang, J.H.; Wang, L.L. Quantifying the Influences of Driving Factors on Vegetation EVI Changes Using Structural Equation Model: A Case Study in Anhui Province, China. Remote Sens. 2022, 14, 4203. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Qi, J.; Rong, T.; Wang, Z.; Yang, Z.; Han, F. Monitoring the Spatiotemporal Dynamics of Habitat Quality and Its Driving Factors Based on the Coupled NDVI-InVEST Model: A Case Study from the Tianshan Mountains in Xinjiang, China. Land 2022, 11, 1805. [Google Scholar] [CrossRef]
- Li, L.-L.; Li, J.; Yu, R.-C. Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia. Adv. Clim. Chang. Res. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Chen, C.; Jing, C.; Zhao, W.; Xu, Y. Grassland quality response to climate change in Xinjiang and predicted future trends. Acta Prataculturae Sin. 2022, 31, 1–16. [Google Scholar]
- Yang, Z.; Xu, B. The concept and calculation method for comprehensive vegetation coverage of grasslands. Pratacultural Sci. 2019, 36, 1475–1478. [Google Scholar]
- Zheng, W.; Zhu, J. Analysis of desertification process and driving force factors in grassland ecosystem of Xinjiang. Pratacultural Sci. 2012, 29, 1340–1351. [Google Scholar]
- Zhang, K.; Wang, Y.; Mamtimin, A.; Liu, Y.Q.; Gao, J.C.; Aihaiti, A.; Wen, C.; Song, M.Q.; Yang, F.; Zhou, C.L.; et al. Temporal and Spatial Variations in Carbon Flux and Their Influencing Mechanisms on the Middle Tien Shan Region Grassland Ecosystem, China. Remote Sens. 2023, 15, 4091. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal Variation of Snow Cover in Tianshan Mountains, Central Asia, Based on Cloud-Free MODIS Fractional Snow Cover Product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef]
- Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, S.L.; Liu, S.H.; Yuan, W.P.; Xiao, Z.Q.; Liu, Q.; Cheng, J.; Zhang, X.T.; Tang, H.R.; Zhang, X.; et al. The Global Land Surface Satellite (GLASS) Remote Sensing Data Processing System and Products. Remote Sens. 2013, 5, 2436. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381. [Google Scholar]
- Jiang, F.; Deng, M.; Long, Y.; Sun, H. Spatial Pattern and Dynamic Change of Vegetation Greenness From 2001 to 2020 in Tibet, China. Front. Plant Sci. 2022, 13, 892625. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. 1948. Available online: https://psycnet.apa.org/record/1948-15040-000 (accessed on 6 April 2023).
- Ranjan, A.K.; Parida, B.R.; Dash, J.; Gorai, A.K. Quantifying the impacts of opencast mining on vegetation dynamics over eastern India using the long-term Landsat-series satellite dataset. Ecol. Inform. 2022, 71, 101812. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Liu, C.X.; Zhang, X.D.; Wang, T.; Chen, G.Z.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Hao, J.; Xu, G.; Luo, L.; Zhang, Z.; Yang, H.; Li, H. Quantifying the relative contribution of natural and human factors to vegetation coverage variation in coastal wetlands in China. Catena 2020, 188, 104429. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Guan, Q.; Luo, H.; Ma, Y.; Zhang, J. Distribution of soil available nutrients and their response to environmental factors based on path analysis model in arid and semi-arid area of northwest China. Sci. Total Environ. 2022, 827, 154254. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, C.; Li, X.; Kong, D.; Gou, J.; Wu, J.; Zhang, S. Effects of Vegetation Changes and Multiple Environmental Factors on Evapotranspiration Across China Over the Past 34 Years. Earths Future 2022, 10, e2021EF002564. [Google Scholar] [CrossRef]
- Zhao, W.K.; Jing, C.Q. Response of the natural grassland vegetation change to meteorological drought in Xinjiang from 1982 to 2015. Front. Environ. Sci. 2022, 10, 1047818. [Google Scholar] [CrossRef]
- Ke, C.-Q.; Liu, X. MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Clim. Res. 2014, 59, 15–26. [Google Scholar] [CrossRef]
- Aisikeer, Y.; Rusuli, Y. Spatiotemporal variation characteristics and trend analysis of vegetation and water area in the Bosten Lake based on multiple endmember spectral mixture analysis model. Arid Land Geogr. 2023, 46, 1622–1631. [Google Scholar]
- Amuti, T.; Luo, G. Analysis of land cover change and its driving forces in a desert oasis landscape of Xinjiang, northwest China. Solid Earth 2014, 5, 1071–1085. [Google Scholar] [CrossRef]
- He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. 2021, 28, 42516–42532. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Lu, Q.; Meng, Z.; Li, Z.; Chen, H.; Kong, J.; Ji, Z.; Qin, A. Spatial-temporal Dynamics of Grassland NDVI and Its Response to Climate Change in Northern China from 1982 to 2015. Res. Soil Water Conserv. 2021, 28, 101–108, 117. [Google Scholar]
- Yong, Z.; Fahu, C.; Xiaohua, G.O.U.; Linya, J.I.N.; Qinhua, T.; Yousheng, W.; Jianfeng, P. The Temporal and Spatial Distribution of Seasonal Dry-Wet Changes over the Northwestern China: Based on PDSI. Acta Geogr. Sin. 2007, 62, 1142–1152. [Google Scholar]
- Yao, J.; Chen, J.; Dilinuer, T.; Han, X.; Mao, W. Trend of climate and hydrology change in Xinjiang and its problems thinking. J. Glaciol. Geocryol. 2021, 43, 1498–1511. [Google Scholar]
- Zhang, R.P.; Guo, J.; Yin, G. Response of net primary productivity to grassland phenological changes in Xinjiang, China. Peerj 2021, 9, 10650. [Google Scholar] [CrossRef]
- Horion, S.; Cornet, Y.; Erpicum, M.; Tychon, B. Studying interactions between climate variability and vegetation dynamic using a phenology based approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 20–32. [Google Scholar] [CrossRef]
- He, C.; Tian, J.; Gao, B.; Zhao, Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Liu, X.; Zhou, Y.; Wang, P.; Li, Z.; Hao, Z.; Liu, S.; Zhao, G.; Zhu, B.; He, X.; et al. Climate change and water security in the northern slope of the Tianshan Mountains. Geogr. Sustain. 2022, 3, 246–257. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Piao, S.; Janssens, I.A.; Tang, J.; Liu, W.; Chi, Y.; Wang, J.; Xu, S. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Chang. Biol. 2014, 20, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Xun, Q.; An, S.; Lu, M. Climate change and topographic differences influence grassland vegetation greening across environmental gradients. Front. Environ. Sci. 2024, 11, 1324742. [Google Scholar] [CrossRef]
- Han, W.; Guan, J.; Zheng, J.; Liu, Y.; Ju, X.; Liu, L.; Li, J.; Mao, X.; Li, C. Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China. Front. Plant Sci. 2023, 14, 1143863. [Google Scholar] [CrossRef]
- He, X.; Zhang, F.; Cai, Y.; Tan, M.L.; Chan, N.W. Spatio-temporal changes in fractional vegetation cover and the driving forces during 2001-2020 in the northern slopes of the Tianshan Mountains, China. Environ. Sci. Pollut. Res. 2023, 30, 75511–75531. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Li, Y.; Luo, G.; Xu, W.; Lu, L.; Li, C.; Feng, Y. The spatial variation of alpine timberlines and their biogeographical characteristics in the northern Tianshan Mountains of China. Environ. Earth Sci. 2013, 68, 129–137. [Google Scholar] [CrossRef]
- Schiemann, R.; Luethi, D.; Vidale, P.L.; Schaer, C. The precipitation climate of Central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol. 2008, 28, 295–314. [Google Scholar] [CrossRef]
- Sun, G.; Chen, Y.; Li, W.; Pan, C.; Li, J.; Yang, Y. Spatial distribution of the extreme hydrological events in Xinjiang, north-west of China. Nat. Hazards 2013, 67, 483–495. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Baligar, V.C.; Elson, M.K.; He, Z.; Li, Y.; Paiva, A.d.Q.; Almeida, A.A.F.; Ahnert, D. Light Intensity Effects on the Growth, Physiological and Nutritional Parameters of Tropical Perennial Legume Cover Crops. Agronomy 2020, 10, 1515. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Zhou, Y.; Ji, B.; Zhou, G.; Fang, H.; Yin, J.; Deng, X. Quantifying driving factors of vegetation carbon stocks of Moso bamboo forests using machine learning algorithm combined with structural equation model. For. Ecol. Manag. 2018, 429, 406–413. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2019, 9, 2888. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, D.B.; Simayi, Z.; Ren, Y.W.; Yang, S.T. Spatial Distribution of Leisure Agriculture in Xinjiang and Its Influencing Factors Based on Geographically Weighted Regression. Sustainability 2022, 14, 5002. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z.; Zhou, N.; Shi, X.; Lock, T.R.; Kallenbach, R.L.; Yuan, Z. Predicted increased P relative to N growth limitation of dry grasslands under soil acidification and alkalinization is ameliorated by increased precipitation. Soil Biol. Biochem. 2022, 173, 108812. [Google Scholar] [CrossRef]
- Zhang, H.; Kattel, G.R.; Wang, G.; Chuai, X.; Zhang, Y.; Miao, L. Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China. J. Arid Land 2023, 15, 871–885. [Google Scholar] [CrossRef]
- Girardin, M.P.; Hogg, E.H.; Bernier, P.Y.; Kurz, W.A.; Guo, X.J.; Cyr, G. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Chang. Biol. 2016, 22, 627–643. [Google Scholar] [CrossRef]
- Li, C.; Leal Filho, W.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D.Y. Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. J. Clean. Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, W.; Zhou, Y.; Li, X. Revisiting the cumulative effects of drought on global gross primary productivity based on new long-term series data (1982–2018). Glob. Chang. Biol. 2022, 28, 3620–3635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
Trends | S-Value | Z-Value |
---|---|---|
Significant degradation | S ≤ −0.0005 | |Z| > 1.96 |
Slightly degradation | S ≤ −0.0005 | −1.96 ≤ Z ≤ 1.96 |
Stable unchanged | −0.0005 < S < 0.0005 | - |
Slight improvement | S ≥ 0.0005 | −1.96 ≤ Z ≤ 1.96 |
Significantly improvement | S ≥ 0.0005 | |Z| > 1.96 |
Sen Slope | Hurst Index | Persistence of Future Change |
---|---|---|
S ≤ −0.005 | ≥0.5 | Decreasing in the past and continuing to decrease in the future (DD) |
S ≤ −0.005 | <0.5 | Decreasing in the past but may increase in the future (DI) |
−0.005 < S < 0.005 | ≥0.5 | Stable in the past and continuing to be stable in the future (SS) |
−0.005 < S < 0.005 | <0.5 | Stable in the past but changing in the future (SC) |
S ≥ 0.005 | ≥0.5 | Increasing in the past and continuing to increase in the future (II) |
S ≥ 0.005 | <0.5 | Increasing in the past but likely to decrease in the future (ID) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Zhao, X.; Liu, N.; Zhang, W.; Shi, W. Analyzing Spatiotemporal Variations and Driving Factors of Grassland in the Arid Region of Northwest China Surrounding the Tianshan Mountains. Remote Sens. 2024, 16, 1952. https://doi.org/10.3390/rs16111952
Fang Y, Zhao X, Liu N, Zhang W, Shi W. Analyzing Spatiotemporal Variations and Driving Factors of Grassland in the Arid Region of Northwest China Surrounding the Tianshan Mountains. Remote Sensing. 2024; 16(11):1952. https://doi.org/10.3390/rs16111952
Chicago/Turabian StyleFang, Yutong, Xiang Zhao, Naijing Liu, Wenjie Zhang, and Wenxi Shi. 2024. "Analyzing Spatiotemporal Variations and Driving Factors of Grassland in the Arid Region of Northwest China Surrounding the Tianshan Mountains" Remote Sensing 16, no. 11: 1952. https://doi.org/10.3390/rs16111952
APA StyleFang, Y., Zhao, X., Liu, N., Zhang, W., & Shi, W. (2024). Analyzing Spatiotemporal Variations and Driving Factors of Grassland in the Arid Region of Northwest China Surrounding the Tianshan Mountains. Remote Sensing, 16(11), 1952. https://doi.org/10.3390/rs16111952